Prof. Dr. Sinsi
|
Christiaan Huygens (Christiaan Huygens Kimdir? - Christiaan Huygens Hakkında)
(1629 - 1695) Yüzyılımızın seçkin bir düşünürü (A N Whitehead), 17 yüzyılı "dâhiler yüzyılı" diye nitelemişti Kepler, Galileo, Newton gibi hepimizin bildiği bu dâhilerden biri de Christiaan Huygens'ti Huygens biri pratik, diğeri teorik olmak üzere başlıca iki çalışmasıyla bilimin öncüleri arasında yer almayı başarmıştır
Hollanda'da dünyaya gelen Christiaan, daha küçük yaşında, matematik ve bilime belirgin bir ilgi duymaktaydı Aydın kesimde etkili kişiliğiyle tanınan babası, devlet adamlığının yanı sıra müzik ve şiirle de uğraşmaktaydı Entellektüel bir ortamda yetişen Christiaan, üniversite öğrenimini tamamladıktan kısa bir süre sonra astronomi ve matematik konularında yayımladığı tezlerle bilim çevrelerinin, bu arada dönemin ünlü matematikçi-fîlozofu Rene Descartes'ın özel dikkatini çeker
Huygens bilimsel çalışmalarına astronomide başlar Teleskop daha yeni kullanılmaya başlanmıştı Genç bilim adamı, geçimini gözlük camı yapmakla sağlayan filozof Spinoza ile işbirliğine girerek daha güçlü bir teleskop elde eder
Gözlemleri arasında Satürn gezegeninin çevresindeki "hale" de vardı Onun geniş, düz bir halkaya benzettiği bu hale aslında iri toz parçalarının oluşturduğu üç kuşak içermektedir Optik araçlar üzerindeki çalışmasının izlerini günümüzde kullanılan araçların taşıdığı söylenebilir Ama onu gününde, asıl üne kavuşturan şey, sarkaçlı saati icat etmesiydi Gerçi Galileo daha önce zamanı belirlemede sarkaçtan yararlanılabileceğini ileri sürmüştü Ancak yoğun çabalara karşın istenilen sonuca ulaşılamamıştı
Huygens'in 1657'de yaptığı saat oldukça dakikti Bu icat öncelikle denizcilikteki gereksinim göz önüne alınarak ortaya konmuştu Ne var ki, beklenen sonuç tam gerçekleşmez Yerçekiminin sarkaç üzerindeki etkisi gözden kaçmıştı Bilindiği gibi belli bir yerde sarkacın her salınım süresi aynıdır Ancak saat arzın merkezinden uzaklaştıkça (örneğin, yüksek bir dağ tepesine çıkarıldığında, ya da, ekvatora yaklaştırıldığında) salınım giderek yavaşlar, saat geri kalır
Bunu daha sonra fark eden Huygens, yitirilen zaman miktarından arzın ekvatordaki şişkinliğinin hesaplanabileceğini bile gösterir
Bu arada Huygens'in adı sınır ötesi bilim çevrelerinde de duyulmaya başlamıştır 1663'te Royal Society (İngiliz Kraliyet Bilim Akademisi) onu, üyelik vererek onurlandırır Huygens törene katılmak için Londra'ya gittiğinde Newton'la tanışır
Newton çalışmalarını takdir ettiği bu yabancı bilim adamını ülkesinde tutmak için girişimlerde bulunur Ama Huygens'e daha parlak bir öneri XIV Louis'den gelir Fransa'nın bilimde üstün bir konuma gelmesini sağlamaya çalışan Kral, Huygens'i bilimsel çalışmalara katılmak üzere Paris'e çağırır Huygens, üstlendiği görevde, Fransa ile Hollanda arasında bu sırada çıkan savaşa karşın, aralıksız onbeş yıl kalır
Üzerinde yoğun uğraş verdiği başlıca konu ışığın yapı ve devinim biçimiydi
Işığın ne olduğu gizemli bir sorun olarak tarih boyunca ilgi çekmiştir Antik Yunan bilginleri nesnelerin görünebilirliğini gözün yarattığı bir olay sayıyordu Örneğin, Epicurus görüntünün gözden kaynaklanan resimlerden oluştuğunu ileri sürmüş, Platon ise gözün ve bakılan nesnenin saçtığı ışınların birleşimi olduğunu vurgulamıştı Daha garip bir açıklamaya göre de, baktığımız nesneyi gözden fırlayan birtakım görünmez incelikte dokunaçlarla görmekteydik
17 yüzyıla gelinceye dek ışık konusunda önemli bir gelişmeye tanık olmamaktayız; üstelik ışık deviniminin anlık bir olay olduğu görüşü yaygındı Aslında doğal olan da buydu; çünkü, ışığın belli bir hızla devindiği sağduyuya pek yatkın bir düşünce değildi Gözümüzü açar açmaz görmüyor muyduk?
Işığın belli bir hızla ilerlediği düşüncesini ilk kez Danimarkalı astronom Römer ortaya koyar 1675'te Jüpiter gezegeninin birinci uydusunu gözlemlemekte olan Römer, uydunun çevresinde döndüğü gezegenin arkasında geçirdiği süreyi saptamak istiyordu Değişik zamanlarda yaptığı ölçmelerin farklı sonuçlar vermesi şaşırtıcıydı Römer bu tutarsızlığı açıklamalıydı
Römer, Dünya ile Jüpiter'in güneş çevresindeki dolanımlarında kimi kez birbirlerine yaklaştıklarını, kimi kez uzaklaştıklarını biliyordu Şaşırtıcı bulduğu olayın, iki gezegenin arasındaki mesafe ile bağıntılı olduğunu görür Aradaki mesafe kısaldıkça uydunun gezegen arkasında geçirdiği sürenin azaldığını, mesafe uzadıkça sürenin arttığını saptayan Römer, bunu, ışığın belli bir hızla ilerlediği hipoteziyle açıklar Işığın aldığı mesafe kısaldığında uydunun erken doğuşu kaçınılmazdı Işığın belli bir hızla devindiği düşüncesi ister istemez başka bir soruya yol açmıştı: Işık nasıl devinmektedir? Huygens bu soruyu dalga kuramıyla, Newton parçacık kuramıyla yanıtlar
Huygens ışığın dalga kuramını Fransızca kaleme aldığı Traite de la Lumiere (Işık Üzerine inceleme) adlı yapıtında ortaya koyar Onun bu kurama yönelmesinde bir etken ışıkla ses arasında gördüğü benzerlikti Bir başka etken de bir delikten çıkan ışığın yalnız tam karşısında ulaştığı noktadan değil çevredeki hemen her noktadan görülmesi olayıydı Bu olay ışığın devinimini anlamak bakımından önemliydi
Huygens'in "esir" kavramı bu işlevi sağlayacaktı Bir benzetme olarak, demiryolunda biribirine dokunan ama bağlı olmayan bir dizi vagon düşünelim Şimdi dizinin başındaki vagona lokomotifin hafif bir vuruş yapması nasıl bir sonuç doğurur? Darbeyi dizi boyu ileten vagonların yerlerinde kaldığı, yalnızca son vagonun uzaklaştığı görülür
Nedenini, devinimin "etki - tepki" yasasında dile gelen ilişkide bulabiliriz: Vuruş etkisini bir sonraki vagona ileten her vagon aldığı tepkiyle dizideki yerinde kalır Bir tepki almayan son vagon ise, aldığı vuruş etkisiyle diziden uzaklaşır Verdiğimiz bu örnek dalga kuramına önemli bir açıdan ışık tutmaktadır Huygens, uzayın, "esir" dediği görünmez bir nesneyle dolu olduğunu varsaymaktaydı Buna göre, ışık bir yerden başka bir yere ilerlerken tıpkı vagonların ilettiği vuruş etkisiyle devinir, şu farkla ki, ilerleme tek bir yönde değil, esir ortamında tüm yönlerde oluşur Nasıl ki, demiryolunda ilerleyen şey vagonlar değilse, uzayda da ilerleyen tanecik türünden nesneler değil, devinim dalgasıdır
Huygens dalga kuramıyla ışığın yansıma, kırılma, kutuplaşma gibi davranışlarını da açıkladığı inancındaydı Ne var ki, dalga kuramı, Newton'un parçacık kuramının gölgesinde, 19 yüzyıla gelinceye dek gözden uzak kalır
Newton 1672'de Royal Society'ye sunduğu bildirisinde beyaz bir ışık ışınının cam prizmadan geçtiğinde gökkuşağındaki gibi bir renk spektrumu sergilediğini belirterek, bunun ışığın taneciklerden oluştuğu hipoteziyle açıklanabileceğini vurgulamıştı Rakibi Robert Hooke'un eleştirisi karşısında daha esnek bir tutum içine giren Newton her ne kadar parçacık ve dalga kuramlarının ikisine de yer veren "karma" bir kuramdan söz ederse de sonuç değişmez; bilim çevreleri Newton'un büyüleyici etkisinde parçacık kuramına üstünlük tanır
19 yüzyılın başlarında durumda beklenmedik bir gelişme olur; dalga kuramı yeniden ön plana çıkar Işık üzerinde yeni deneylere girişen Thomas Young (1773-1829) elde ettiği verilerin ışığın dalga kuramıyla ancak açıklanabileceğini görür Kaynağı ve sıcaklığı ne olursa olsun ışık hızının değişmemesi, seçilecek kuramın geçerlik ölçütü olmalıydı
Young'a göre, dalgaların hızının aynı kalmasını bekleyebilirdik; ama tanecikler için aynı şey söylenemezdi Gene, yansıma ve kırılmanın aynı zamanda olması, dalga açısından bakılınca doğaldı; oysa, taneciklerin bir bölümü yansırken, bir bölümünün kırılması açıklamasız kalan bir olaydı
Öte yandan, Newton, ışığın dalga niteliğinde olması halinde doğrusal bir çizgide ilerlemesine, keskin gölge oluşturmasına olanak bulmamıştı Young'ın buna yanıtı basitti: Dalga uzunlukları yeterince kısa ise, ışığın hem doğrusal devinimi, hem de keskin gölge oluşumu beklenebilirdi Ayrıca, Young'ın "karışım" (interference), onu izleyen Fresnel'in "kırınım" (diffraction) denen olgulara getirdikleri açıklamalar dalga kuramını destekleyici nitelikteydi
Daha sonra Maxwell'in dalga kuramını daha kullanışlı bulması da dengenin büsbütün parçacık kuramı aleyhine dönmesine yol açar Ne var ki, yüzyılımızın başında durum bir kez daha değişir Planck'ın kuvantum, Einstein'ın foto-elektrik kavramlarıyla ışığın parçacık kuramı yeniden ön plana çıkar
Bugün ulaşılan düzeyde kuramlardan ne birinin ne ötekinin kesin egemenliğinden söz edilebilir Bir bakıma Newton'un sözünü ettiği, şimdi kimi bilim adamlarının "wavicle" diye dile getirdikleri "dalga-tanecik" karması ya da ikilemiyle karşı karşıyayız Geçici de olsa bu "barışıklık" aşamasında egemenlik paylaşılmış görünüyor Huygens dalga kuramının öncüsü olarak bilim gündeminde yerini korumaktadır
|