Dna Nanoteknolojisi |
12-20-2012 | #1 |
Prof. Dr. Sinsi
|
Dna NanoteknolojisiDNA Nanoteknolojisi Vikipedi, özgür ansiklopedi DNA nanoteknolojisi, nanoteknolojinin bir alt sahasıdır, DNA ve diğer nükleik asitlerin moleküler tanıma özelliklerini kullanarak yeni moleküler yapılar oluşturmayı amaçlar Bu sahada, DNA kalıtsal bilgi taşıyıcısı olarak değil, yapısal bir malzeme olarak kullanılır Bunun uygulaması moleküler özbirleşme (İng self assembly) ve DNA hesaplamasıdır Tarih M C Escher'in gravürü Derinlik Nadrian Seeman'a ilham vermiş, üç boyutlu DNA örgüleri ile zor kristalleşen moleküllerin dorultularını düzeltilebileceğini düşündürmüştür Bu fikir, DNA nanoteknoloji sahasının başlangıcı olmuştur Escher_Depthjpg DNA nanoteknoloji kavramı 1980'li yılların başlarında Nadrian Seeman tarafından icat edilmiştir Bir kristalograf olan Seeman, bazı moleküllerin kristalleştirilmesini sağlayacak şartların bulunmasının tahmine ve tesadüflere dayalı olmasından yılmıştı 1980'de, M C Escher'in Derinlik adlı gravürü ona ilham vermiş, üç boyutlu bir DNA örgüsünün (latisin), kristallenmesi amaçlanan molekülleri yönledirebileceğini farkettirmiştir 1991'de Seeman'ın laboratuvarı, DNA'dan oluşan bir kübün sentezi hakkındaki raporunu yayımladı Seeman, nano-ölçekli bu ilk üç boyutlu cisim için 1995'te Feynman Nanoteknoloji Ödülünü almıştır Nano-kübün ardından, DNA'dan yapılmış kesik oktahedron gelmiş ama anlaşılmıştır ki bu cisimler üç boyutlu bir örgü oluşturabilecek kadar rijit değildir Seeman daha rijit olan "DX" motifini geliştirmiş ve 1988'de Erik Winfree ile birlikte iki boyutlu DX "karo"larından oluşan iki boyutlu örgülerin oluşturulmasını yayımlamıştır Bu karolara dayalı yapıların bir diğer avantajı, DNA hesaplamasının gerşekleştirilme olanağını sağlamalarıydı Winfree ve Paul Rothemund 2004'te bunu gösterdiler ve bunun için 2006'da Feynman Nanoteknoloji Ödülü'nü paylaştılar Bu saha dallanmaya devam etmektedir İlk DNA makinası (bir girdinin etkisiyle yapısını değiştiren bir yapısal motif) 1999'da gösterilmiştir Nanomimari 1987'de Seeman tarafından önerilmiştir ve 2006'da bu sahanın ilk uygulamaları gösterilmiştir Gene 2006'da Rothemund ilk DNA origami tekniği ile, herhangi bir şekle sahip katlanmış DNA moleküllerinin kolaylıkla oluşturulabileceğini göstermiştir 2009'da Seeman üç boyutlu bir örgü (kafes) sentezini yayımlamıştır, bu amaçta çalışmaya başlamasından nerdeyse otuz yıl sonra Temel kavramlar DNA nanoteknolojisinde dallı DNA yapıları kullanılınca faydalı özellikleri olan DNA kompleksleri oluşturmak mümkündür DNA normalde doğrusal bir moleküldür, ama bağlantı noktaları içeren DNA molekülleri yapılabilir Örneğin, dört kollu bir bağlantı yapmak için birbirine uygun biçimde komplementer olan dört DNA ipliği kullanılabilir Watson-Crick baz eşleşmesi sayesinde, ipliklerin sadece birbirine komplementer olan kısımları birbirine bağlanarak ikili DNA oluşturur Bu dört kollu bağlantı Holliday bağlantısının hareketsiz bir tipidir Bağlantılar daha karmaşık molekülleri oluşturmakta kullanılabilir Bunların en önemlisi "çifte krosover" motifidir (İngilizce literatürde buna DX kısaltmasıyla değinilir) Bunda, birbirine paralel iki DNA ikilisi vardır, bunlar iki bağlantı noktasını paylaşırlar; bu bağlantı noktalarında birer iplik bir ikiliden öbürüne geçer Bu yapının avantajı, belli bir doğrultu ile sınırlandırılmış olmasıdır, oysa dört kollu bağlantı esnektir Bu sayede, çifte krosover yapısı daha karmaşık kompleksler için bir yapı elemanı olmaya uygundur 4 kollu bir bağlantı Sol: Bir şema Sağ: Daha gerçekçi bir model DNA'nın dört ayrı ipliği farklı renklerde gösterilmiştir 200px-Holliday_Junctionsvgpng200px-Holliday_junction_colouredpng Bir çifte krosover molekülü Bu molekül beş DNA ipliğinden oluşur, bunlar iki çift sarmallı bölge oluştururlar, resmin solunda ve sağında İpliklerin bir bölgeden öbürüne geçtikleri yerlerde iki adet krosover noktası bulunur 300px-Mao-DX-schematic-2jpg Tasarım DNA nanoteknolojisinin ana hedeflerinden biri, belli bir hedef yapı veya işlevi sağlamak için birbirleriyle birleşecek DNA moleküllerinin dizilerini belirlemektir Arzu edilen bir yapıyı oluşturmakta kullanılacak DNA dizilerini tasarlamak için birkaç farklı yol vardır 1 Karolara dayalı yapılarDX dizilimlerinin kurgusu Her bir çubuk DNA'nın çifte sarmal bölgesini, çubukların uçlarındaki şekiller ise komplementer yapışkan uçları temsil etmektedir Yukarıdaki DX molekülü aşağıda gösterilen iki boyutlu DNA dizilimi ile birleşecektir DNA nanoyapılarını oluşturmak için karoya dayalı stratejinin bir örneğidir bu Mao-DXarray-schematic-smalljpg DNA nanoyapıları oluşturmanın ilk yöntemi, bunları daha küçük birimlerden inşa etmekti Parke karolarıyla bir zeminin kaplanmasına benzeyen bu yöntemin avantajı, her bir karoyu oluşturan etkileşimler ile, tüm yapıyı oluşturan etkileşimlerin ayrı tasarlamasını mümkün kılmasıdır Genelde periyodik örgüler yapmakta kullanılan bu yöntem, algoritmik özkurgu (İng self-assembly) gerçekleştirmekte de kullanılır, bu da DNA hesaplamasının temelini oluşturur 2 Katlamalı yapılar Karoya dayalı yaklaşıma bir alternatif olarak, uzun DNA ipliklerinin arzu edilen şekiller halinde katlanmasını sağlayarak iki boyutlu DNA yapıları oluşturmaktır Bu katlanma, kısa "zımba" DNA ipliklerin etkisiyle sağlanır Bu inşaat prensibine örnek olarak bir gülümseyen yüz, bir de Kuzey Amerika'nın basit bir haritası yaratılmıştır Bu yöntem DNA origamisi olarak adlandırılmıştır 3 Kinetik kurgu DNA nanoteknolojisindeki çoğu tasarım, yapının oluşumunun izlediği reaksiyon yoluna önem vermeden, hedef yapının termodinamik bir minimumda yer almasına odaklanır Ancak, DNA özkurgusunun kinetiğini kontrolüne de önem verilebilir, kurgu sırasındaki oluşan geçici yapıların dinamikleri de programlanabilir Bu yöntemin avantajı, yapı oluşumunun sabit sıcaklıkta gerçekleşmesi, yani tamamen termodinamik prensiplere göre yapılmış tasarımlardaki tavlama adımına gerek göstermemesidir 4 Dizi tasarımı Yukarıdaki yaklaşımlardan biri ile hedef molekülün ikincil yapısı tasarladıktan sonra, arzu edilen yapıyı oluşturacak bir nükleotit dizisinin tasarlanması gerekir Nükleik asit tasarımı, arzu edilen bir biçimde (örneğin bakınız RNA yapısı) birleşecek nükleik asit baz dizilerinin üretimidir Nükleik asit tasarımı DNA nanoteknoloji sahasında merkezi bir yeri vardır Nükleik asit tasarımının amacı protein tasarımınkine benzer: ikisinde de, arzu edilen yapının oluşmasına eğilimli olan ve arzu edilmeyen yapıları oluşmasına eğilimli olmayan monomerler dizisi tasarlanır Hesaplama yapmak açısından nükleik asit tasarımı daha basit bir problemdir, çünkü Watson-Crick baz eşleşme kurallarının sadeliği, basit buluşsal yöntemleri mümkün kılar, bunlardan deneysel anlamda sağlam tasarımlar elde edilir Ancak, nükleik asit yapıları, proteinlere kıyasla işlevleri bakımından daha sınırlıdır Hedef yapılar DNA'dan oluşan pek çok yapı sentezlenmiş ve karakterize edilmiştir 1 İki boyutlu örgülerSolda, iki boyutlu periyodik bir örgü yapmak için kullanıla bir DNA karosunun modeli Sağda, meydana gelen örgünün atomik güç mikrografı 800px-DNA_nanostructuresjpg Çifte krosover (DX) molekülleri yapışkan uçlara sahip olurlarsa bunlar birbiriyle birleşerek iki boyutlu periyodik bir örgü (latis) oluşturabilirler Her bir DX molekülünün dört ucu vardır, bunlar iki çifte sarmal bölgenin uçlarında yer alırlar Bu uçlar yapışkan olursa bunların arzu edilen belli biçimlerde birleşmesi sağlanabilir Birden çok DX tipi kullanılarak bunların diziler veya başka tesselasyon biçimleri olarak düzenlenebilir Meydana gelen yassı yapraklar aslında iki boyutlu DNA kristalleridirler İki boyutlu dizilimler başka motifler kullanılarak da yapılmıştır Bunların arasında Holliday bağlantı eşkenar dörtgen dizilimi ve, üçgen veya altıgen şekilli çeşitli çifte krosover-temelli dizilimler sayılabilir Bir DNA tetrahedron yapsını modeli Tetrahedronun her kenarı 20 baz çifti uzunluğunda bir DNA ikilisidir, her köşe ise bir üç-kol bağlantısıdır DNA_tetrahedronjpg 2 Ayrık üç boyutlu yapılar Küp veya tetrahedron gibi çokyüzlülere benzer bir takım DNA moleküllü yapılar oluşturulmuştur Bir diğer deyişle, DNA ikilileri bir çokyüzlünün kenarlarını, DNA bağlantıları da köşelerini oluşturur DNA çokyüzlüsünün en erken gösteriminde, çok sayıda ligasyon ve katı hâl sentez adımı ile bir kafes çokyüzlü yaratılmıştır Diğer örnekler, doğru şekilde katlanacak şekilde tasarlanmış uzun bir iplikten yapılmış köşeleri kesik bir oktahedron ve dört DNA ipliğinden tek bir adımda meydana gelebilen bir tetrahedrondur Katı yüzlü DNA yapıları da inşa edilmiştir, DNA origami yöntemi ile Bu yapılar bir uyarı ile açılıp içlerinde taşıdıkları kargoyu boşaltacak şekilde programlanabilirler, böylece bunların programlanabilir moleküler kafes uygulamaları olabilir 3 DNA nanotüpleri Yassı yapraklara ek olarak, çifte krosover dizilimlerinin, 4-20 nm çapında içi boş tüpler oluşturması da sağlanabilmiştir Bu DNA nanotüpleri karbon tüplerine benzer büyüklük ve boyuttadırlar ama karbon nanotüpleri daha sağlam ve daha iletkendir, buna karşın DNA nanotüplerini daha kolay modifiye edilebilir ve başka yapılara bağlanabilir 4 Genişletilmiş üç boyutlu yapılar DNA'dan üç boyutlu örgüler yapmak DNA nanoteknolojisinin ilk amaçlarından biriyid ama tahmin edilenden daha zor oldu Üç boyutlu örgülerin inşasında başarı nihayet 2009'da, tensegrite kavramina dayalı bir motif ile mümkün oldu Tensegrite, gerilim ile sıkışma güçleri arasındaki dengedir Uygulamalar DNA nanoteknolojisi tasarlanmış işlevlere ve yapılara sahip moleküller yaratmayı amaçlar Çeşitli işlevsel sınıflar gösterilmiştir 1 Nanomimari DNA dizilimlerini bir kalıp gibi kullanıp başka işlevsel moleküllerin kurgusunu sağlamak fikri ilk defa Nadrian Seeman tarafından 1987'de önerilmiş, ama ancak 2006'da bu planların pratik uygulaması gösterilebildi DX temelli bir karoya bir altın nanotaneciği bağlanmış ve DNA yapılarının kendi kendini oluşturmasının (öz kurgusunun) sonucunda DNA'lara bağlı olan nanotaneciklerin de birleştiği gösterilmişir Bir diğer uygulamada, DX dizilimi üzerinde Dervan poliamidleri kullanılarak, DNA diziliminde yer alan belli çeşit karolar üzerinde streptavidin moleküllerinin yerleştirilmesi sağlanabilmiştir 2006'da Dwyer ve LaBean 4x4'lük bir DX dizilimi üzerinde, streptavidin kullanarak, "D" "N" and "A" harfleri oluşturulmuştu 2007'de, hiyerarşik bir kurgu yöntemi ile bu yaklaşım daha büyük dizilimlere de uygulanmıştır (8X8 ve 896 Mega Dalton kütleli) DNA nanoteknolojisi ile moleküler elektronik cihazlar kurma girişimleri de yapılmıştır Bu amaçla, DNA kullanılarak tek duvarlı karbon nanotüplü alan etkili transistör oluşturulmuştur 2 Algoritmik özkurguSierpinski üçgeni 250px-SierpinskiTrianglesvgpng Sierpinski üçgeninin bir temsilini sergileyen DNA dizilimleri 679px-Rothemund-DNA-SierpinskiGasketjpg DNA nanoteknolojisi, ilgili bir saha olan DNA hesaplamasına da uygulanmıştır DX karolarının yapışkan uçları uygun şekilde seçilirse bunlar Wang karoları gibi davranıp hesaplama yapabilir Bir DX diziliminin bir XOR mantık işlemini kodladığı gösterilmiştir B sayede, bir DNA dizilimi bir hücresel otomat (cellular automaton) oluşturmakta, bu da, Sierpinski üçgeni olarak adlandırılan bir fraktal üretmektedir Böylece bir DNA dizilimine hesaplama işlevinin de dahil edilebileceği gösterilmiştir DNA hesaplaması ile DNA nanoteknolojisi örtüşen sahalar olmakla beraber ayrıktırlar DNA nanoteknolojisi, Watson-Crick baz eşleşmesinin spesifisitesini kullanarak DNA'dan yeni, değişik yapılar meydana getirir Bu yapılar DNA hesaplaması için kullanılabilir ama böyle bir şart yoktur Buna ek olarak, DNA nanoteknolojisi ile mümkün kılınmış moleküller olmadan da DNA hesaplaması yapmak mümkündür DNA nanomekanik cihazlar Belli bir dürtü sonucu şeklini değiştirebilen DNA kompleksleri imal edilmiştir Bunlar nanorobotik uygulamaları için tasarlanmıştır Bu tür cihazların ilk yapılanlarından olan "moleküler cımbız", bir kontrol ipliğinin etkisiyle açık bir hâlden kapalı bir hâle geçebilmektedir Burulma hareketi yapabilen DNA kompleksleri de imal edilmiştir Bunlar B-DNA ile Z-DNA biçimleri arasındaki geçiş yaparak çözeltideki değişen şartlara cevap vermektedir Bir diğeri, bir kontrol ipliğinden yararlanarak, paranemik krosover konformasyonundan çifte bağlantı konformasyonuna geçiş yapmaktadır Malzeme ve yöntemler Arzu edilen diziye sahip DNA molekülleri oligonükleotit sentezi ile kolayca elde edilebilir Bu işlem genelde bir DNA sentezleme makinası kullanılarak otomatikleştirilmiştir ve çoğu şirket aracılığıyla siparişli DNA elde edilebilir Hedef yapıyı olşturacak DNA ipliklerinin dizileri bilgisayarla tasarlanır Moleküler modelleme ve termodinamik modelleme DNA dizilerini optimize etmek için bazen kullanılır DNA nanoteknolojisinde kullanılan DNA molekülleri genelde jel elektroforezi ile karakterize edilir Böylece DNA moleküllerinin büyüklüğü ve şekli hakkında bilgi elde edilir ve bu moleküllerin doğru oluştukları kontrol edilir Bu moleküllerin yaplarını karakterize etmek için flüoresan işaretleme ve Flüresans rezonans enerji transferi DNA yapılarını görüntülemek için atomik güç mikroskopisi kullanılır, bu yöntem ile düz yüzeyler üzerindeki yapıların resimleri çekilebilir Bu araç iki boyutlu kristaller için uygundur ama ayrık üç boyutlu yapılar için pek yararlı değildir Bu tür yapılar için kriyo-elektron mikroskopi popülerleşen bir yöntemdir Büyük üç boyutlu yapıların analizi X-ışını kristalografisi ile yapılır DNA özkurgusunun kinetiğini araştırmak için ikili polarizasyon enteroferometrisi ve QCMD kullanılabilir Kaynak: http://wwwmsxlabsorg/forum/biyoloji/330680-dna-nanoteknolojisihtml#ixzz29loE2Bhy |
|