Geri Git   ForumSinsi - 2006 Yılından Beri > Eğitim - Öğretim - Dersler - Genel Bilgiler > Eğitim & Öğretim > Matematik / Geometri

Yeni Konu Gönder Yanıtla
 
Konu Araçları
anlatımı, aritmetiği, çözümler, dersi, konu, matematik, taban, örnekler, örnekli

Taban Aritmetiği Örnekli Çözümler Matematik Dersi Konu Anlatımı Örnekler

Eski 12-19-2012   #1
Prof. Dr. Sinsi
Varsayılan

Taban Aritmetiği Örnekli Çözümler Matematik Dersi Konu Anlatımı Örnekler




Herhangİ bİr sayı sİstemİnden Onluk sayı sİstemİne geçİş:

Herhangi bir sayı sisteminden Onluk sayı sistemine geçebilmek için basamak (hane) çözümlemesi yapılmalıdır n bir sayı sisteminin tabanını göstermek üzere n >= 2 olacak şekilde bir doğal sayı ise (abcde)n sayısı onluk sayı sistemine şöyle dönüştürülür

Örnek: (218)9 = ( ? )10 taban dönüşümünü yapalım

81 9 1

( 2 1 8 )9 = 922 + 911 + 908

= 812 + 91 + 18

= 162 + 9 + 8

= 179

Örnek: (305)7 = ( ? )10 taban dönüşümünü yapalım

49 7 1

( 3 0 5)7 = 723 + 710 + 705

= 493 + 70 + 15

= 147 + 0 + 5

= 152

Onluk sayı sİstemİnden Dİğer sayı sİstemlerİne geçİş:

Onluk tabandaki bir sayı diğer tabanlara çevrilirken geçilmesi istenen taban hangi taban ise onluk tabandaki sayı o sayıya bölünmelidir Bölme işlemi bölümdeki sayı taban sayısından küçük olana kadar yapılmalıdır Yeni tabandaki sayı en sondan başlanarak önce bölüm sonra da kalanlar sırasıyla yazılarak elde edilir

Onluk taban dışındakİ bİr tabandan başka bİr tabana geçİş:

Verilen sayı önce Onluk tabana çevrilir Sonra da Onluk tabandaki sayı geçilmek istenen tabana dönüştürülür Yani n verilen taban ve m istenen taban ise dönüşümün mantığı şu şekildedir:

Örnek: (1011)2 = ( ? )7 taban dönüşümünü yapalım

Önce 2 tabanındaki 1011 sayısını Onluk tabana çevirelim

8 4 2 1

( 1 0 1 1 )2 = 231 + 220 + 211 + 201 = 81 + 40 + 21 + 11

= 8 + 0 + 2 + 1 = 11

Şimdi de Onluk tabandaki 11 sayısını 7 tabanına çevirelim 11 sayısını 7' ye böldüğümüzde bölüm 1 ve kalan da 4 olacağından

(11)10 = (14)7

sonucunu elde ederiz Dolayısıyla (1011)2 = (14)7 olarak bulunur

Onluk taban dışındakİ tabanlardakİ sayıların teklİğİ veya çİftlİğİ:

Sayının tabanı çift ise sayının son rakamına (birler basamağındaki rakamına) bakılarak karar verilir Şayet sayının son rakamı çift ise sayı çifttir Şayet sayının son rakamı tek ise sayı tektir Örneğin (12345)8 = Tek (1236)8 = Çift olur

Sayının tabanı tek ise sayının rakamları toplamına bakılarak karar verilir Şayet sayının rakamları toplamı çift ise sayı çifttir Şayet sayının rakamları toplamı tek ise sayı tektir Örneğin (234)7 = Tek (2361)7 = Çift olur

Onluk taban dışındakİ tabanlarda arİtmetİk İşlemler:

Toplama İşlemİ:

Örnek: (101)2 + (11)2 = ( ? )2

( 1 0 1 )2

+ ( 1 1 )2

__________

( 1 0 0 0 )2

İkilik tabanda 1 ile 1' in toplamı 10' dır Dolayısıyla ilgili basamağa 0 yazılır ve 1 sayısı bir önceki basamağa eklenir

Örnek: (234)5 + (143)5 = ( ? )5

Birler basamağının toplamı 4 + 3 = 7' dir 7 5 tabanında 12' dir Dolayısıyla birler basamağına 2 yazıp beşler basamağına 1 ekleriz

Beşler basamağının toplamı 3 + 4 + 1 (birler basamağından eklenen) = 8 olur 8 5 tabanında 13' tür Dolayısıyla beşler basamağına 3 yazıp yirmibeşler basamağına 1 ekleriz

Yirmibeşler basamağının toplamı 2 + 1 + 1 (beşler basamağından eklenen) = 4 olarak bulunur

Sonuç olarak toplam (432)5 olur

Çıkarma İşlemİ:

Örnek: (132)5 - (23)5 = ( ? )5

Birler basamağının farkı 2' den 3 çıkartılamayısacağı için beşler basamağından 1 alınmalıdır (yani 5 alınmalıdır) Bu durumda 7' den 3 çıkartılarak 4 bulunur

Beşler basamağından 1 alındığı için burada 2 kalmıştır Böylece 2' den 2 çıkartıldığında 0 kalır

Yirmibeşler basamağındaki 1 sayısından birşey çıkartılmadığı için aynen alınır

Sonuç olarak fark (104)5 bulunur

Çarpma İşlemİ:

Örnek: (144)5 x (23)5 = ( ? )5

(144)5 x (23)5 = (144)5 x (3)5 + (144)5 x (2)5 = ( 1 0 4 2 )5

+ ( 3 4 3 )5

= ( 1 0 0 2 2 )5

Çarpma işleminin mantığı onluk tabandaki çarpma işlemine çok benzer 5 tabanındaki 144 ile 3' ün çarpımı şöyle yapılır:

Birler basamağı: 4 ile 3' ün çarpımı 12' dir Birler basamağına 2 yazılır ve 10 sayısının içinde 5 sayısı 2 tane olduğu için beşler basamağına 2 aktarılır

Beşler basamağı: 4 ile 3' ün çarpımı 12' dir ve buna birler basamağından aktarılan 2 sayısı da ilave edilerek 14 elde edilir Beşler basamağına 4 yazılır ve 10 sayısının içinde 5 sayısı 2 tane olduğu için yirmibeşler basamağına 2 aktarılır

Yirmibeşler basamağı: 1 ile 3' ün çarpımı 3' tür ve beşler basamağından aktarılan 2 sayısı da ilave edilerek 5 elde edilir 5 tabanında 5 10 olduğu için yirmibeşler basamağına 0 ve yüzyirmibeşler basamağına da 1 yazılır

Örnek: ( 25m0 )6 = ( 642 )10 ise m = ?

216 36 6 1

( 2 5 m 0 )6 = ( 642 )10

2162 + 365 + 6m + 10 = 642

432 + 180 + 6m + 0 = 642

612 + 6m = 642

6m = 642 - 612

6m = 30

m = 5

Örnek: ( 102 )m + ( 145 )m = ( 251 )m ise m = ?

m2 m 1 m2 m 1 m2 m 1

( 1 0 2 )m + ( 1 4 5 )m = ( 2 5 1 )m

( m21 + m0 + 12 ) + ( m21 + m4 + 15 ) = m22 + m5 + 11

m2 + 2 + m2 + 4m + 5 = 2m2 + 5m +1

2m2 + 4m + 7 = 2m2 + 5m + 1

4m +7 = 5m + 1

7 - 1 = 5m - 4m

6 = m

Örnek: ( 124 )5 + ( 103 )5 = ( m2n )7 ise m = ?

( 124 )5 + ( 103 )5 = ( 232 )5 bulunur ( 232 )5 sayısını onluk tabana çevirelim

25 5 1

( 2 3 2 )5 = 252 + 53 + 12 = 50 + 15 + 2 = 67 olur

Şimdi de onluk tabandaki 67 sayısını 7' lik tabana çevirelim

67 : 7 = 79 + 4 olur Bölüm 9 ve kalan 4 dir

9 : 7 = 71 + 2 olur Kalan 2 ve bölüm 1 olur En sondaki bölümle kalanlar tersten yazılarak ( 67 )10 = ( 124 )7 bulunur

Buradan

( m2n )7 = ( 124)7

olduğundan m = 1 bulunur

Alıntı Yaparak Cevapla
 
Üye olmanıza kesinlikle gerek yok !

Konuya yorum yazmak için sadece buraya tıklayınız.

Bu sitede 1 günde 10.000 kişiye sesinizi duyurma fırsatınız var.

IP adresleri kayıt altında tutulmaktadır. Aşağılama, hakaret, küfür vb. kötü içerikli mesaj yazan şahıslar IP adreslerinden tespit edilerek haklarında suç duyurusunda bulunulabilir.

« Önceki Konu   |   Sonraki Konu »


forumsinsi.com
Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
ForumSinsi.com hakkında yapılacak tüm şikayetlerde ilgili adresimizle iletişime geçilmesi halinde kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde gereken işlemler yapılacaktır. İletişime geçmek için buraya tıklayınız.