|  | Arıların Matematiksel Özellikleri |  | 
|  09-02-2012 | #1 | 
| 
Prof. Dr. Sinsi
 |   Arıların Matematiksel ÖzellikleriHayvanların matematiksel özellikleri Hayvanların matematiksel özellikleri nelerdir Arılar doğanın gerçekten usta mimarlarıdırlar  Kesiti düzgün altıgenler oluşturan prizma şeklindeki petek gözlerinin dipleri bir piramit oluşturarak sona ererler  Kovanlardaki şekliyle dik duran her petekte, petek gözleri yatayla sabit bir açı yapacak şekilde inşa edilirler  Her bir gözün derinliği 3 santimetre, duvar kalınlığı ise milimetrenin yüzde beşi kadardır  Bu kadar ince duvar kalınlığına rağmen altıgen yapı nedeniyle büyük bir direnç kazanırlar ve arıların depoladıkları kilolarca balı rahatlıkla taşıyabilirler  Arıların petek gözlerini kusursuz bir şekilde altıgen yapmalarının başka sebepleri de vardır  Eğer beşgen, sekizgen veya daire şekillerini seçselerdi bitişik gözler arasında boşluklar kalacak, işçi arılar fazla mesai yaparak ve daha fazla balmumu harcayarak bu boşlukları doldurmak zorunda kalacaklardı  Gerçi üçgen veya kare yapsalardı bu boşluklar olmayacaktı ama altıgenin bir başka özelliği daha vardır  Alanları aynı olan üçgen, kare ve altıgen şekillerden toplam kenar uzunluğu en az olanı altıgendir  Yani aynı miktarda balmumu ile daha çok altıgen odacığın kenarı çevrilebilir  Aslında matematiğin, geometrinin ve simetrinin en kusursuz örnekleri sadece bal peteklerinde değil doğanın her yerinde görülebilir  Ancak bizler günlük hayatın hayhuyu içinde bu mükemmelliğin farkına varamayız  Kar taneciklerinin hepsi birbirlerinden farklı altıgen şekilleri, tohumların dizilişlerindeki spiraller, mineral kristallerindeki geometrik yapılar ve değişmez açılar, tavus kuşunun kuyruğundaki lekeler, sümüklü böceğin kabuğu, örümcek ağları, tüm bunlar görüntü olarak kusursuz olmalarına karşın müthiş bir matematik düzen de gösterirler  Papatyanın ortasındaki sağ spirallerin sayısının 21, sol spirallerin ise 34 olması, Himalaya çamının kozalaklarındaki pulların aynı şekilde 5 sağ, 8 sol spiral oluşturması, kara çam kozalaklarında ve ananas meyvesinde ise 8 sağ, 13 sol spiral bulunması tesadüf değildir elbette  Leonardo Fibonacci (1170-1250) isimli büyük matematik ustası ta o yıllarda, her sayının kendinden önce gelen iki sayının toplamı olduğu bir dizi geliştirdi; l, l, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,                      Dikkat ederseniz yukarıda verilen sağ, sol spiral sayıları, bu dizide artarda yer alan sayılardır  Bu dizinin ilginç bir yanı da on ikinci terimden yani 144'den sonraki ardışık sayıların birbirlerine oranlarının (233/144 = 377/233 = 610/377) 1,61803 olması, 5  Sayı ile 12  Sayı arasındaki oranların da bu sayıya çok yakın olmalarıdır  15  Yüzyılın ikinci yarısında yaşamış matematikçi Pacial Luca tabiatta daima kenarları arasında 1,618 oranı bulunan bir dikdörtgen bulunduğunu, hatta insan vücudunun da bu oranda yaratıldığını ileri sürüyor, mahkeme tarafından yakılma tehlikesine karşı da Leonardo da Vinci'nin çizimlerini göstererek meydan okuyordu  Zamanın heykeltraşlarının heykellerinde de bu oranı kullandıklarını belirtmeleri üzerine bu oran Tanrısal Oran' olarak da anılmaya başlandı   | 
|   | 
|  | 
|  |