Geometri, Geometrinin Bölümleri |
|
|
#1 |
|
Şengül Şirin
|
Geometri, Geometrinin BölümleriGEOMETRİ; Alm Geometri (f) Fr Geometrie (f) İng Geometry Uzayı ve uzayda tasarlanabilen şekilleri ve cisimleri inceleyen matematik dalı Yunanca bir kelime olan geometri,kelime manası olarak yerin ölçülmesi demektir Geometri çok eski çağlardan beri vardı Ancak geometri ismi,bu ilmin ilk sistematik hame gelmeye başladığı eski Yunanlılarda verilmiş olup,aksiyomatik bir ilim haline gelmesine rağmen,halen kullanılmaktadır![]() Geometriyle sırasıyla Tales,Pigasor,Eflatun ilgilenmiştir M Ö 3 yüzyılda Euclides'in yazdığı Elemanlar adlı kitap,geometrinin sistemli bir ilim haline gelmesine öncülük etmiştir M Ö 330 yıllarında kurulan İskenderiye,Akdeniz bölgesinin en etkili kültür merkezi olma özelliğini uzun yıllar muhafaza etmiş ve burada geometri çok gelişmiştir![]() Adları zamanımıza kadar uzanan matematikçilerin ,fizikçilerin ve astronomicilerin bu kültür merkeziyle sıkı ilgileri olmuştur İskenderiye ocağı sönünce,matematik ve geometri Akdeniz bölgesinde geriledi ve hatta zamanla izleri silindi Buna karşılık İslam aleminde birçok matematikçiler yetişti Müslümanlar ,geometri üzerine mevcut olan çalışmalarına devam etmişlerdir Bu arada Abbasiler zamanında klasik Yunan kaynaklarıyla temasa gelmişlerdir Bu kaynaklarda yazılanlarla kendi bilgilerini karşılaştırmışlar Yunan eserlerindeki yanlışlıkları düzeltmişler ve bu sahada yeni eserler vermişlerdir İlk eserlerden birisi Beni Musa'nın Kitabu Marifeti Mesahat-il -Eşkal ( Şekillerin Alan Bilgisi) adlı kitabıdır Daha sonra bu kitaba Nasıreddin Tusi açıklama yazmıştır Bu ise daha sonraları Latinceye tercüme edilmiştir Beni Musa'nın konikler üzerine yazdığı kitap da meşhurdur Sabit ibni Kurre Parabolün Kuadraturu adlı eserinde parabol parçalarının alanlarını hesaplamıştır Diğer bir geometrici Ebü'l-Vefa el- Buzcani 'dir ki Fima Yahtacu İleyhi es-Sani min A'mal-il -Hendese (Sanatkarın İhtiyacı Olan Geometri İşlemler)eseridir İbni el Heysem'in ise izoperimetri problemleri üzerindeki çalışmaları kayda değerdir![]() Biruni ile mektuplaşan Ebü'l -Cud,çemberi dokuz eşit parçaya ayıran bir metod geliştirmiştir ![]() Ömer hayyan ve Tusi'nin Euclid'in paralel doğru teorisi ile ilgili beşinci postulatın incelenmesi yeni bir devrin başladığına işaret eder Ömer Hayyan'ın Fi Şerhi ma Eşkale min Müsaderat Kitabı Euclid (euclid Elemanlarının Zorluğu Üzerine) adlı eseri bir anlamda Euclid dışı geometrilere açılan ilk kapıdır Bu müslüman geometri alimleri ve kitapları ,Rönesanstan sonra Avrupa'da yetişenlere rehberlik ettiler![]() Batıda geometrinin gelişmesi ve doğu ile aralarındaki bağın yeniden kurulması,ancak Rönesansla mümkün oldu Euclid'in paraleller postulatının ilk tenkidcileri,bu postulatın doğruluğundan değil,açık bir noktanın olmayışından şüphelendiler Bu sebeple postulatı bir tarafa bırakarak,açıklığı olan başka bir postulat koymaya çalıştılar Aynı problem 13 asırda İranlı Matematikçi Nasireddin Tusi tarafından yeniden ele alındı![]() Onsekizinci asırda paraleller postulatı üstüne Avrupa'da Papaz Sacheri,Legender,Lambert gibi matematikçiler ve 19 asırda Alman Matematikçi Gauss tarafından çeşitli çalışmalar yapıldı Bu araştırmalardaki başarısızlık,bu postulatın "kabul edilebilir" özellikteki açık önermelerden faydalanarak ispat edilemeyeceği düşüncesini ortaya koydu Hakikaten çok geçmeden bu düşünce Bolyai (1832)de ,Lobachevsky (1855) de "paraleller postulatı'yerine "Lobacevski postulatı"nı (Bir doğruya bu doğru dışındaki her noktadan iki paralel çizilebileceğini kabul eden postulat) koyarak ,yeni bir geometri kurulabileceğinin farkına vardılar Böylece "Hiperbolik Geometri"denilen yeni bir geometrinin temelleri atılmış oldu Daha sonra Riemann paralelliği kabul etmeyen "Eliptik Geometri"nin temellerini attı Kaynak;Yeni Rehber Ansiklopedisi 8 cilt sayfa 20 frmsinsi net için derlenmiştir![]()
__________________
Arkadaşlar, efendiler ve ey millet, iyi biliniz ki, Türkiye Cumhuriyeti şeyhler, dervişler, müritler, meczuplar memleketi olamaz
En doğru, en hakiki tarikat, medeniyet tarikatıdır |
|
Cevap : Geometri, Geometrinin Bölümleri |
|
|
#2 |
|
Şengül Şirin
|
Cevap : Geometri, Geometrinin BölümleriGeometride ele alınan bütün mevzular nokta,çizgi,yüzey ve hacimlerle ifade edilir Şekilleri bu yönlerden ele alıp,özelliklerini inceler Geometrideki bu temel ifadelerden nokta en ilginç olanıdır Noktanın eni,boyu ,yüksekliği ,alanı ve hacmi mevcut değildir Bu sebepten den noktanın müstakil bir tarifi mevcut değildir Ancak iki doğrunun kesişim kümesi olarak tarif edilebilir Buna mukabil geometrinin diğer ifade araçlarından çizgi ,yüzey ve hacim en az bir boyuta sahib olan ifadelerdir Çizgi,sadece uzunluğu olan (bir boyutlu); yüzey,uzunluğu ,genişliği ve yüksekliği olan (üç boyutlu) ifadelerdir![]() Her ilim dalında olduğu gibi geometrinin de üzerine kurulu bulunduğu bir temeli mevcuttur Bu temel üzerinde kendi ifade birimleri ile,meseleleri (promlemleri) açıklığa kavuşturmaya çalışır Bu temeller aksiyom,postülat,tanım (tarif) ,teorem ve geometrik yer isimlerini alır Bunlardan aksiyom,ispata ihtiyaç duyulmadan ,kabul edilen önermelerdir (Bakz Aksiyom)![]() Aksiyomlardan (doğru veya yanlış) büyük ölçüde faydalanılır Doğru aksiyomlar doğru,yanlış olanları ise yanlış neticeler meydana gelmesine sebebiyet verirler Geometrik aksiyomlar ortaklık,sıra,denklik,paralellik ve süreklilik aksiyomları olmak üzere beş gruba ayrılır![]() Postülatlar,mantıki olarak doğruluğu kabul edilmesine rağmen doğru veya yanlış olduğu ispat edilmeyen önermelerdir Geometride postülatların kullanılması bazı problemlerin çözümünde önem arz etmektedir![]() Tanım (tarif),bir kavramı,bir varlığı,özel ve temelli niteliklerini belirterek tanıtmak olup,bir geometri problemi üzerinde yürütülen fikirlerin doğruluğu ,tanımların doğruluğu ile doğru orantılıdır ![]() Mesela karşılıklı kenarları paralel olan dörtgenlere paralelkenar denir Dikdörtgen ise karşılıklı kenarları paralel ve bir açısı dik olan dörtgenlerdir Bu tariflerde karşılıklı kenarların ve açıların eşit olması ile,açıların hepsinin dik olması,ayrı özelliklerdir Geometri,problemleri ve bu problemler üzerindeki çalışmalarda bu tarifler son derece ehemmiyet kazanır![]() İspatlanabilen önermeler olan teoremler,iki kısımdan meydana gelir Hipotezler ,verilen bilgiler ve bu bilgilerden çıkarılan varsayımlardır Hüküm ise teoremin ispat edilmesi istenen bölümüdür Geometri problemlerinde ,problemin ifadesinden hipotez ve hüküm kısmını ayırd etmek çok önemlidir "Bir üçgende bir dış açı kendisine komşu olmayan iki iç açının toplamına eşittir "ifadesi bir teoremdir Bir ispatta,aksiyomlardan postulatlardan,tariflerden ve istenen ispatı yapabilmek için daha önce ispatlanmış olan teoremler ile bazı teoremler için ispatı yapmaya faydalı olacak "yardımcı teorem" adı verilen teoremlerden istifade edilir Bu kaynaklardan faydılanılmadan ,geometri teoremlerinin ispatı yapılamaz yapılsa da tutarlı ve geçerli yönü olmaz Bir teoremin hükmü başa alınır,hipotez yapılır hipotezi de hüküm yapılırsa,elde edilen yeni teoreme ,evvelkinin "karşıt teoremi" adı verilir![]() Geometride bütün problemlerin çözümüne uygulanacak bir tek metod göstermek imkansızdır Çünkü her problem,kendi niteliğine uygun bir yol ile çözülebilir Bununla beraber,çözüm için yapılacak araştırma ve muhakemeye bir yön vermek mümkündür Kullanılan metodları,özel ve genel diye sınıflandırabiliriz Özel metodlar,çözücünün bu husustaki görme ve sezme yeteneğine bağlıdır Bir problemi çözerken görülen özel yol diğer birine uygulanmaz![]() Geometrik görüş ve seziş melekelerinin geliştirilmesi için çüzücüye bol sayıda "çözülmüş problem" incelenmesi tavsiye edilir Genel metodlar,analiz ve sentez olmak üzere ikidir![]() ANALİZ; Bu metodla ispat yaparken,ispatı istenen hükmü hareket noktası alıp geriye doğru zincirleme bir muhakeme yapılır Mesela (D) önermesinin doğruluğunu göstermek için ,buna göre daha basit olan (C)nin ,doğruluğunu göstermeye bunun içinde daha basit olan bir (B) önermesinin doğruluğunu göstermeye gayret edilir Böylece ,daha önceden bilinen bir önermeye varıncaya kadar devam edilir![]() Bu metodla problem çüzülürken,problem çözülmüş olarak kabul edilip,şekil çizilir ve yukarıda anlattığımız seri muhakeme yapılarak,sorulan problem,çözümü belli bir problem veya teoreme götürülmeye çalışılır Çoğu zaman çizim problemlerinde izlenen yol budur![]() SENTEZ; Analizin tersi olan bir metoddur Bu metodla bir hükmü ispat etmik için,daha önceden bilinen bir önermeden hareket edilerek zincirleme bir muhakeme ile yeni bir önermeye geçilir Bunun doğruluğu gösterildikten sonra,adım adım sorulan hükme doğru yaklaşılır En sonunda sorulan hükmün de doğru olacağı sonucuna varılır Mesela,bir (D) önermesinin doğruluğunu göstermek için önceden bilinen (A) doğru olduğundan (B) de doğrudur ( B) doğru olunca (C) de doğru olur Nihayet (C) doğru olduğu için,(D) nin de doğru olması gerekir" diye sıralı bir muhakeme yapılır![]() Bu metodu,problem çözmeye uygulamak güçtür Çünkü bir problemi çözmek için ,önceden belli olan hangi problem veya teoremden hareket edileceği bilinmez Onun için bir problemin çözümünü ararken izlenen metod analizdir Sentez ise,daha çok bir teoremden yeni bir teorem bulmakta veya belli çözümü anlatmakta kullanılır Bilinen bir çözümü bu metodla anlatmak kısa olduğu için öğretimde tercih edilir![]() Bir ispatın tam olabilmesi için ,çabuk yapılan bir analizden sonra sağlam bir sentezi ihtiva etmelidir ![]() Bir düzlem içerisinde ortak özelliğe sahib olan noktaların meydana getirdiği geometrik şekle "geometrik yer " adı verilir Mesela,verilen bir noktaya belirli bir uzaklıktaki noktaların geometrik yeri bir çemberdir![]() Kaynak;Yeni Rehber Ansiklopedisi 8 cilt sayfa 21-22 frmsinsi net için derlenmiştir![]()
__________________
Arkadaşlar, efendiler ve ey millet, iyi biliniz ki, Türkiye Cumhuriyeti şeyhler, dervişler, müritler, meczuplar memleketi olamaz
En doğru, en hakiki tarikat, medeniyet tarikatıdır |
|
Geometrik yer problemleri, geometrinin bölümleri |
|
|
#3 |
|
Şengül Şirin
|
Geometrik yer problemleri, geometrinin bölümleriGEOMETRİK YER PROBLEMLERİ Geometrik yer problemlerinin çözümünde ,önce geometrik yerin cinsini anlamak için,geometrik yere ait olması gereken birkaç özel nokta gözönüne alınır ve bu noktalardan geçecek çizginin ne olabileceği aranır (şimdilik bu çizgi;doğru,çember,elips,hiperbol,parabol![]() ![]() ![]() olur )Böylece geometrik yerin cinsi kestirildikten sonra düşünceler o yönde toplanır Çözüme başlanırken;1- Geometrik yere ait (yani verilen şarta uyan) bir nokta M olsun denir Sonra bu noktanın şekille ilgili hangi sabit çizgi üzerinde bulunacağı aranır![]() 2- Karşıt olarak bu çizgi üzerinde alınan herhangi bir M noktasının verilen şartı gerçekleyip,gerçeklemediği gösterilir Eğer çizginin bir kısmındaki noktalar verilen şartı gerçeklemiyorsa,çizginin bu kısmı geometrik yere ait değildir denir![]() GEOMETRİNİN BÖLÜMLERİ 1- ANALİTİK GEOMETRİ; Tasvirleri ve geometri uzayındaki çalışmaları rakam ve cebir denklemleri kullanarak ifade eden matematik dalı Analitik geometride noktalar,sıralanmış sayı kümelerinden meydana gelen koordinatlarla ifade edilir Analit geometrideki çalışmalarda problemin hususiyetine göre kartezyen koordinat sistemi (dik veya eğik) veya polar koordinat sistemleri kullanılır (Bkz Analitik Geometri)![]() 2- DİFERANSİYEL GEOMETRİ; Hesaplamanın ve özellikle diferansiyel hesabın geometriye tatbik edildiği hal On dokuzuncu yüzyıldaki en değerli matematik kitaplarında diferansiyel geometrinin temeli,düzlem ve uzaydaki eğrilerle uzaydaki yüzeyler olmuştur Diferansiyel geometrinin temel kavramları eğrilerin teğetleri ,teğetlerin değişmeleri ve eğrilikleridir Kartografyadaki bir yüzeyin bir başka yüzey üzerine haritasının çıkarılması diferansiyel geometri kavramlarına dayanan bir çalışmadır Bu sahada vektör ve tansör hesap,düzenli bir şekilde kullanılır Geometrinin bu bahsinin anlışılmasında,diferansiyel hesap esaslarının iyi bilinmesi gerekmektedir![]() Bir yüzey uzaydaki dik kartezyen koordinatlarda Bir uzay eğrisinin bir diğer ifadesi ise parametrik gösrerilimle olur![]() Burada t parametredir Yay uzunluğu olan s,eğri üzerinde sabit bir noktadan ölçülür Yay uzunluğu;formülüyle hesaplanır ![]() Eğrinin p noktasında Ve bu Bu düzleme (P) noktasında dik olan vektöre binomal vektör denir![]() Üç vektörün meydana getirdiği Çünkü eğri P noktası etrafında hareket eder Bu hareket Frenet ile ifade edilir![]() Kaynak;Yeni Rehber Ansiklopedisi 8 cilt sayfa 21-22 frmsinsi net için derlenmiştir
__________________
Arkadaşlar, efendiler ve ey millet, iyi biliniz ki, Türkiye Cumhuriyeti şeyhler, dervişler, müritler, meczuplar memleketi olamaz
En doğru, en hakiki tarikat, medeniyet tarikatıdır |
|
Cevap : Geometri, Geometrinin Bölümleri |
|
|
#4 |
|
Şengül Şirin
|
Cevap : Geometri, Geometrinin BölümleriYüzeyler f(x,y,z)=o veya Bir S yüzeyinin eğrileri u ve v arasındaki ilişki ile verilmektedir![]() 3- EUCLİDE GEOMETRİSİ; Euclide geometrisi,ismini M Ö 300 yıllarında bu branşı kurarak uzay geometrisini yeniden düzenleyen geometrici Euclide'den alır Euclide geometrisi Non-Euclide geometriden Euclide'in meşhur beş postülatı ile ayrılır Bunlar paralellik postülatlarıdır Non-Euclid geometrinin 19 yüzyılda ortaya çıkmasından önce ,Euclide geometri çözülemeyen mantıki tüm dengelim sistemlerini ve uzay ifadelerini sadece matematik ifadeler kullanarak çözmeye çalışırdı![]() Euclid,teorilerini aksiyomlar ve postülatlar olmak üzere ikiye ayırmıştır ![]() EUCLİDE'İN POSTÜLATLARI ŞUNLARDIR; a) İki nokta bir doğru ifade eder ![]() b) Bir doğrudan bir doğru parçası elde edilebilir ![]() c) Bir daire bir merkez ve yarıçapı ile ifade edilebilir ![]() d) Bir dik açı bütünleyenine eşittir ![]() e) Bir doğru iki aykırı doğru tarafından kesildiğinde,meydana gelen iki iç açının toplamı ![]() Düzlem geometride,geometri uzayı iki boyutlu düzlemdir Euclid düzlem geometrisinde temel elemanlar noktalar ve doğrulardır Teoremler,matematik aksiyomlardan yapılan çizimlerden sonuç elde edilmesi şeklindedir Euclide geometrinin en iyi bilinen teoremi Pisagor teoremidir![]() 4-) PROJEKTİF GEOMETRİ;On beş ve on altıncı yüzyıldaki ressamların üç boyutlu cisimleri iki boyutta temsil etme isteğinden doğmuştur o zaman en iyi bir resmin,cisimle,göz arasına konulacak bir camda ortaya çıkarılabileceğine gelinmişti Projektif geometri,matematik bir disiplin olarak ancak 19 yüzyıldan sonra ortaya çıktı![]() TEMEL TARİFLER; Bir F şeklini P noktasına birleştiren doğrular şeklin projeksiyonunu teşkil ederler Eğer bu doğrular bir F' düzlemiyle kesilirse,yeni bir şekil elde edilir F düzlemindeki şekille F'düzlemindeki şekil arasındaki ilişkiye perspektif dönüşüm denir F' yeni şeklinin bir P'noktasına göre projeksiyonunu üçüncü bir düzlemle F şeklini versin F'' iki perspektif dönüşümün sonucudur Böyle devam ederek bir seri perspektif dönüşümler bulabilir Projektif geometri,projektif dönüşümler altında değişmeyen özellikleri inceleyen bilim koludur![]() PROJEKTİF DEĞİŞİM;Projektif geometride noktalar noktalara,doğrular doğrulara dönüşür İki doğrunun kesim noktası dönüşmüş doğruların kesim noktası olarak ortaya çıkar Ancak pekçok şey de değişir Mesela,mesafeler ve açılar değişir Üçgen projektif bir şekil olduğu halde,eşkenar üçgen ve dik üçgen projektif bir şekil değildir Dörtgen projektif olduğu halde ,dikdörtgen veya paralel kenar değildir Konikler projektif olduğu halde,elips,parabol ve hiperbol kendi içlerinde projektif şekiller değildir![]() AKSİYOM SİSTEMLERİ; Projektif geometri ortaya çıkarmak için gerekli aksiyomlar pekçok şekilde ifade edilebilir Bunlardan bir takımı aşağıdaki gibi sıralanabilir;AKSİYOM 1 ; Birbirinden farklı iki nokta tek bir doğru üzerinde bulunur ![]() AKSİYOM 2; Her doğrunun üzerinde en az üç ayrık noktası vardır ![]() AKSİYOM3; Bir doğru ile üzerinde olmayan bir nokta mevcuttur ![]() AKSİYOM4; İki farklı doğrunun en az bir ortak noktası mevcuttur DUALİTE (İKİLİK) PRENSİBİ; Dikkat edilirse doğru ile nokta aksiyomlarda ve bundan çıkarılacak teoremlerde benzer durumlardadır Mesela aksiyom 3'te "doğru " ile "nokta " yerleri değiştirilirse ,bir değişiklik olmaz Diğer aksiyomlarda da yapılacak bir değişiklik daha sonra elde edilecek teoremleri verir Bu tür bir özellik,geometrinin daha kullanışlı olmasını sağlar Mesela ,doğru ve nokta için ispat edilecek bir teoremin hemen nokta ve doğru içinde geçerli olduğu söylenebilir![]() TEMEL TEOREM; Projektif geometride,bir doğru üzerindeki üç noktanın dönüşümlerinin de bir doğru üzerinde olduğu ispatlanabilir Bu sonuç,projektif geometrinin temel teoremi ile alakaladır Temel teorem;"Bir projeksiyon ,bir doğru üzerinde üç nokta ve onların dönüşümleri verildiğinde,tamamen belirlidirl "şeklindedir![]() PROJEKSİYON ÇEŞİTLERİ; Projektif geometride bazı noktalar projeksiyon sırasında değişmezler bunlara projeksiyonun değişmez noktaları denir Projeksiyon böyle noktaların hiç,bir tane veya iki tane olmasına göre sıra ile eliptik,parabolik veya hiperbolik olarak isimlendirilir![]() TASARI GEOMETRİ;Uzay veya düzlemdeki bir şekli izdüşüm vasıtalarıyla gösterilme metodlarını verir Pekçok mükkün metoddan,1- Merkezi izdüşüm, 2- Aksonometri ve paralel izdüşüm, 3- Ortografik izdüşüm başlıcalarıdır ![]() Fotogrametri de alakalı bir konudur ![]() Merkezi İzdüşüm; Uzaydaki bir şekil,sabit C noktasından bir düzlem üzerine izdüşülür İlk diyagramda,izdüşüm düzlemi adı verilen P düzlemi,izdüşüm merkezi olarak adlandırılan sabit bir nokta vardır A noktasını izdüşümü alınacak uzaydaki bir görüntü noktası olarak kabul edersek bu nokta sabit C noktasına bir doğru çizgi ile birleşir Doğrunun izdüşüm düzlemini kestiği noktaya veya A1'e A noktasının izdüşümü adı verilir![]() Perspektif ;Perspektifte P düzlemi dik olarak düşünülmüş ve resim (görüntü) düzlemi olarak adlandırılmıştır Buna dik olan G yer düzlemidir ve yatay olarak düşünülür Yer düzlemi resim düzlemini yer hattında keser G üzerindeki ve P arkasındaki cisimlerin P üzerine izdüşümleri alınmış ve izdüşüm merkezi C (şimdi bir göz olarak kabul edilen)P'den biraz önde ve G 'nin üstüne yerleştirilmiştir G'ye paralel olan C'den geçen düzlem P'yi ufukta keser Ufuk,G'ye paralel bütün doğruların kaybolan uçlarının birleştiği bir hattır G düzlemi üzerindeki bir maddeyi gözle irtibatlayan ışınlar veya doğrular ,resim düzlemini perspektif olarak keser Böyle elde edilen şekiller,tabiatta belli bir mesafeden görüldüklerine aynen benzetilebilir![]() Aksonometri;" Axonometry" terimi kartezyon koordinat eksenleri olan OX,OY veya OZ vasıtasıyla olan bir izdüşüm sistemine isnat eder O,eksenlerin kesiştiği başlangıç (orijin) noktasıdır İzdüşüm,resim çizilen yüzeye diktir![]() Koordinat sistemi pozitif bölgede,içinde temel Bu düzlem,uzay noktalarının izdüşümlerinin eğik olarak alındığı izdüşüm düzlemidir Bu paralel belli bir istikamettedir O başlangıç noktasının, Bu izdüşümde paralel eksenler paralel kalır![]() NON-EUCLİDE GEOMETRİ;Bu tabir bazan Öklid'in kanunlarına ters düşen geometrik teoriler için kullanılır ![]() Daha teknik olarak paralel aksiyomlar ve onun neticeleri ile uyumluluğu korumak için gerekli olan diğer küçük değişiklikler hariç tamamiyle Euclid'e uyanb ir geometri dizayn eder ![]() Kaynak;Yeni Rehber Ansiklopedisi 8 cilt sayfa 23-24-25 frmsinsi net için derlenmiştir
__________________
Arkadaşlar, efendiler ve ey millet, iyi biliniz ki, Türkiye Cumhuriyeti şeyhler, dervişler, müritler, meczuplar memleketi olamaz
En doğru, en hakiki tarikat, medeniyet tarikatıdır |
|
|
|