Geri Git   ForumSinsi - 2006 Yılından Beri > Eğitim - Öğretim - Dersler - Genel Bilgiler > Eğitim & Öğretim > Matematik / Geometri

Yeni Konu Gönder Yanıtla
 
Konu Araçları
bergman, uzayı

Bergman Uzayı

Eski 10-29-2012   #1
Prof. Dr. Sinsi
Varsayılan

Bergman Uzayı



Bergman uzayı

Matematiğin bir alt dalı olan karmaşık analizde, Bergman uzayı karmaşık düzlemin bir D bölgesinde tanımlı, D 'nin sınırında mutlak türevlenebilen holomorf fonksiyonlardan oluşan bir fonksiyon uzayıdır Bu uzay ismini, Stefan Bergman isimli matematikçiden almıştır Daha düzgün bir dille, Bergman uzayı olan , D üzerinde tanımlı ve p-normu sonlu olan holomorf fonksiyonlardan oluşmaktadır Yani, eğer ise o zaman aşağıda verilen norm koşulu sağlanmalıdır:

gösterimindeki α harfi fonksiyonun analitik (holomorf fonksiyonların analitikliği maddesine bakınız) olduğunu simgelemek için eklenmiştir ve bu gösterim Bergman uzayının tek gösterimi değildir Kullanımının zorluk çıkarmayacağı düşünülerek Ap(D) de kullanılmaktadır Bergman uzayları Banach uzayıdır Bu sonuç, D 'nin tıkız bir K altkümesi üzerindeki şu kestirimin bir sonucu olarak elde edilebilir:

Bu yüzden, Lp(D) 'deki bir holomorf fonksiyonlar dizisinin yakınsaklığı ayrıca bu dizinin tıkız yakınsak olduğunu verir Böylece, limit fonksiyonu da holomorftur

p = 2 ise, o zaman bir doğuran çekirdekli Hilbert uzayıdır ve çekirdeği de Bergman çekirdeği tarafından belirlenir

Alıntı Yaparak Cevapla
 
Üye olmanıza kesinlikle gerek yok !

Konuya yorum yazmak için sadece buraya tıklayınız.

Bu sitede 1 günde 10.000 kişiye sesinizi duyurma fırsatınız var.

IP adresleri kayıt altında tutulmaktadır. Aşağılama, hakaret, küfür vb. kötü içerikli mesaj yazan şahıslar IP adreslerinden tespit edilerek haklarında suç duyurusunda bulunulabilir.

« Önceki Konu   |   Sonraki Konu »


forumsinsi.com
Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
ForumSinsi.com hakkında yapılacak tüm şikayetlerde ilgili adresimizle iletişime geçilmesi halinde kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde gereken işlemler yapılacaktır. İletişime geçmek için buraya tıklayınız.