Geri Git   ForumSinsi - 2006 Yılından Beri > Genel Kültür & Serbest Forum > Serbest Forum

Yeni Konu Gönder Yanıtla
 
Konu Araçları
esrarlı, sayı

Esrarlı Sayı : Pi

Eski 06-22-2012   #1
Prof. Dr. Sinsi
Varsayılan

Esrarlı Sayı : Pi



vay be bizim pi sayısında ne hikmetler gizliymişde haberimiz yokmuşmuşöyledir hakkaten herşeyde bir düzen ve ölçü vardır bu makaledede anlatıldığı gibi pi sayısının virgülden sonraki basamakları bile anlamsız gibi görünsede aslında bir ölçü ve düzen ifade etmektedirpi sayısının karakteristiğide denilebilir buna tıpkı atomların yapısındaki nötron proton ve elektronun bulunma ölçüleri gibi bunlardan biri ölçüyü biraz kaçırsa atomun yapısının bozulacağı varolmayacağı muhakkatır vsvs


Alıntı Yaparak Cevapla

Esrarlı Sayı : Pi

Eski 06-22-2012   #2
Prof. Dr. Sinsi
Varsayılan

Esrarlı Sayı : Pi



Birçoğumuz, resim yaparken dağların ardından parıldayan güneşi, altın sarısı bir daire; gece nuruyla arzı aydınlatan dolunayı da beyaz bir daire olarak çizmişizdir İrili ufaklı çemberlerin, renk renk dairelerin resimlerimize kattığı güzelliğin farkına varmış, geometri derslerinde çoğumuz farklı boyutlardaki bu dairelerin ortak sırrı olan, çevresinin çapına oranını ifade eden "p" sayısını öğrenmişizdir Bu sabit sayı, Yunan alfabesinin 16 harfi olan "p" sembolü ile gösterilir Bir sicim kullanılarak yapılan basit bir ölçmeyle, bu sayının "yaklaşık" olarak 22/7 yani 3,142857142857 olduğu görülebilir Fakat bu, p'nin gerçek değeri değildir Ölçme büyüklüğü önemli olmayan herhangi bir çember çizilir, bu çemberin çevresi ile eşit uzunlukta bir ip temin edilir Daha sonra ip, çemberin çapı uzunluğunda parçalara ayrılır, görüleceği gibi çap uzunluğunda 3 parça ile çapın yedide birinden biraz kısa bir parça ip elde edilir Böylece çemberin çevresinin çapına oranı olan p sayısının, 3 tam 1/7 yani 22/7'den biraz daha küçük bir sayı olduğu görülmüş olur Fakat bu rasyonel bir sayıdır ve bu tip sayılarda virgülden sonraki basamaklar tekrar ettiği takdirde blok şeklinde sonsuza kadar tekrar eder p sayısı veya Ö2 gibi irrasyonel sayılarda ise, virgülden sonraki basamaklar sonsuza kadar sürekli değişir (kaotik şekilde) ve bir kurala tâbi olmaz

Çoğumuzun hafızasında p sayısı 3,14 veya 22/7 olarak yer etmiş olsa bile, p'nin gerçek değeri bunların ikisi de değildir Peki bu sayı, yani p, tam olarak kaçtır? İşte bu soru, p sayısını tam olarak hesaplamak isteyenleri 4000 yıldır meşgul etmektedir Bilim ve teknolojinin bu kadar ilerlediği günümüzde bile, bir çemberin çapına oranının tam olarak hesaplanamaması, işlem sonsuza kadar devam ettiği için ilâhî hikmetleri açısından üzerinde düşünülmeye değer bir husustur Tarih boyunca matematikle ilgilenen birçok insan, p sayısını hesaplamak için yıllarını vermiştir p sayısının 3,141592653589793238 şeklinde sonsuza kadar devam eden bir ondalık rakam serisi olduğu bilinmektedir Virgülden sonra sonsuz sayıda basamak olduğu ve bir sayının sonsuza oranının sıfır olduğu göz önüne alınırsa, trilyonuncu basamağın bulunmasının bile p'nin bütün serisini bulmaya nispeten ne kadar önemsiz olduğu daha iyi anlaşılabilir Buradan sonsuza uzanan bir seriyi araştırmanın pratik bir faydasının olmadığı da anlaşılacaktır

psayısının değeri:
3,141592653589793238462643383279502884197169
39937510582097494459230781640628620899862803
48253421170679821480865132823066470938446095
50582231725359408128481117450284102701938521
10555964462294895493038196442881097566593344
61284756482337867831652712019091456485669234
60348610454326648213393607260249141273724587
0066063155881748815209096282925409171536436
78925903600113305305488204665213841469519415
11609433057270365759591953092186117381932611
79310511854807446237996274956735188575272489
12279381830119491298336733624406566430860213
94946395224737190702179860943702770539217176
29317675238467481846…

En hassas hesaplamalarda bile belli bir basamaktan sonrası önemini yitirdiği halde, insanlar niçin p'nin sonsuza giden basamaklarını bilmek istiyor? Bu sorunun cevaplarından biri, muhtemelen, insanın sınırları ölçme isteği ve sonsuzu anlama iştiyakıdır Bu sayı ile Yüce Yaratıcı'nın kâinatta vazettiği kanunlar arasında bir münasebet olduğunu düşünenler, bu sayının basamaklarında sanki bir işaret, bir mesaj aramışlardır "Allah kanunlarını her zaman geometri ile vazetmiştir" diyen Eflatun da onlardan biridir

Üstad Bediüzzaman Hazretleri ise konuyu, 20 Söz'de, daha genel bir bakışla şu şekilde değerlendirmiştir: "Her bir kemalin, her bir ilmin, her bir terakkiyatın, her bir fennin bir hakikat-ı âliyesi var ki, o hakikat, bir İsm-i İlâhî'ye dayanıyor Pek çok perdeleri ve mütenevvi tecelliyâtı ve muhtelif daireleri bulunan o isme dayanmakla o fen, o kemâlât, o sanat, kemâlini bulur, hakikat olur Yoksa yarım yamalak bir surette nâkıs bir gölgedir Meselâ, hendese (geometri) bir fendir Onun hakikati ve nokta-yı müntehası (en son noktası), Cenab-ı Hakk'ın 'ism-i ADL (her şeyi yerli yerince ve doğru yapan) ve MUKADDİR'ine ( her şeyi belli ölçüler içinde yaratan) yetişip, hendese âyinesinde o ismin hakimane cilvelerini haşmetiyle müşahede etmektir"

p sayısının hesaplanmasındaki tarihî süreç Mısırlılar ile başlar Mısırlı bir katip olan Ahmes'in MÖ 1650 yıllarında hesapladığı p değeri olan 3,16049 ile gerçek değer 3,14159 arasında yalnızca binde altılık bir hata vardır O zamanki şartlar dikkate alınırsa bu başarılı bir tespit sayılabilir Büyük Giza Piramidi'nin bir kenarının yüksekliğine oranının yaklaşık olarak p'nin 2'ye oranı ile aynı olması, p sayısının Mısır estetik ve mimari anlayışındaki yerini göstermektedir

İnsanlar uzun yıllar bu değerle yetindikten sonra Arşimed (MÖ 287-212) p
sayısının 3 tam 1/7 den küçük, 3 tam 10/71’den büyük olduğunu bulmuştur Muhtemelen, Arşimed p sayısının tam olarak bulunamayacağını biliyordu, bu yüzden alt ve üst sınırlarını hesaplamakla yetindi Bu değerleri bulurken hareket noktası kısaca şu şekilde özetlenebilir: Yarıçapı l olan bir çemberin içine ve dışına Şekil 1'deki gibi iki düzgün altıgen çizilir Kolayca görülebileceği gibi çemberin çevresi, içteki altıgenin çevresinden uzun ve dıştaki altıgenin çevresinden kısadır, bu da matematik diliyle 6<2p <4Ö3 şeklinde ifade edilir Dolayısıyla 3

Fibonacci, Leibniz, Newton ve Euler gibi Batılı matematikçilerle birlikte İslâm dünyasından da El-Harezmi ve Gıyasüddin Cemşid gibi matematikçilerin p sayısında virgülden sonraki ileri basamakları çözmeye çalıştıklarını belirtmek gerekir Gıyasüddin Cemşid 15 yüzyılın başlarında p sayısının virgülden sonraki 12 basamağını, Avrupalı matematikçilerden 200 yıl kadar önce doğru bir şekilde hesaplama başarısını göstermiştir p serüvenini yazarken Çudnovski kardeşlerden bahsetmemek olmaz Bu iki kardeş, p sayısını hesaplamak için, satın aldıkları parçalarla bir bilgisayar yapmışlardır Evlerine kurdukları bu bilgisayarı kullanarak 1989'da p'nin 1 milyara yakın basamağını hesaplama rekoru kırmışlardır Niçin bu basamakları bulduklarını David Çudnovski "p'yi keşfetmek, kâinatı keşfetmek gibidir" sözü ile açıklar p'nin basamaklarını bulmadaki bilinen en son rekor, 1999 yılında Yasumasa Kanada isimli sevdalısı tarafından Tokyo Üniversitesi'nde kırılmıştır Kanada, ileri düzeyde hesap yapabilen bir bilgisayar ile, yaklaşık 37 saatte p'nin 206,158,430,000 basamağını hesaplamıştır Bu rekorla iki yıl önce Takashi ve Kanada'nın birlikte kırdıkları 51,5 milyarlık eski rekor da yenilenmiştir

Aslında bu ileri hesaplamalara hobi denebilir Günlük hayatın pratiği virgülden sonraki basamakları bu şekilde uzatmamızı gerektirmez Çünkü makro-âlemdeki uygulamalar atom-altı ölçeğin boyutlarına kadar inmez, bunları ihmal eder; çünkü bunlar bizim hayatımıza tesir edecek önemde değildir

p'nin bir başka özelliği ise transandantal bir sayı olmasıdır, yani p katsayıları tam sayı olan hiç bir polinomun kökü değildir Eski zamanlardan itibaren geometri âşıkları, sadece pergel ve (üzeri işaretlenmemiş) cetvel kullanarak geometrik çizimler yapmak istemişlerdir Meselâ, sadece pergel ve cetvel kullanarak alanı bir dairenin alanına eşit olan kare çizme meselesi bu insanları asırlar boyu meşgul etmiştir Cebir dalında çalışma yapan uzmanlar, dairenin alanına eşit alanlı karenin çizilebilir olmasının Öp'nin çizilebilir olmasına bağlı olduğunu ispat etmişlerdir p transandantal bir sayı olduğu için Öp çizilemez, dolayısıyla sadece pergel ve cetvel kullanarak alanı daire ile eşit alanlı bir kare çizmek imkânsızdır

p'deki sırları keşfetmek isteyenler, onun düzensiz gibi görünen basamakları arasında bir benzerlik, bir münasebet aramışlardır Virgülden sonraki basamaklarını tekrar eden sayı grupları şeklinde elde etmeyi denemişlerdir Meselâ p'nin yaklaşık bir değeri olarak bilinen 22/7 yani 3,142857142857 sayısının virgülden sonraki basamakları 142857 sayı grubunun tekrarı şeklindedir Ne var ki, sayısı olan 3,141592653589793238 açılımının virgülden sonraki basamakları arasında buna benzer bir münasebet bulmak imkânsız gibi gözükmektedir Bu, aynen dış görünüşlerinin birbirine benziyor görünmesi ile birlikte her insanın parmak izinin farklı olması gibidir Nasıl ki her şahsın kendine has bir parmak izi vardır ve bu, insanın kimliğini belirler, bunun gibi p sayısının basamakları da onu belirler, sonsuza giden basamaklarındaki tek bir rakam bile değişse o artık p değildir Bütün çemberlerin söz birliği etmişçesine işaret ettiği bir sayı olan p'nin basamaklarının düzensiz ve rastgele olması düşünülemez Kamer suresi 49 âyette Rabbimiz; "Muhakkak ki Biz her şeyi bir kaderle, bir ölçü ile yarattık" buyurmuştur Dolayısıyla p'nin basamaklarındaki bu yapının, her mahlûku belli bir ölçüyle yaratan Yaratıcı'nın (cc) Mukaddir isminin bir tecellisi olduğu açıktır




Alıntı Yaparak Cevapla
 
Üye olmanıza kesinlikle gerek yok !

Konuya yorum yazmak için sadece buraya tıklayınız.

Bu sitede 1 günde 10.000 kişiye sesinizi duyurma fırsatınız var.

IP adresleri kayıt altında tutulmaktadır. Aşağılama, hakaret, küfür vb. kötü içerikli mesaj yazan şahıslar IP adreslerinden tespit edilerek haklarında suç duyurusunda bulunulabilir.

« Önceki Konu   |   Sonraki Konu »


forumsinsi.com
Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
ForumSinsi.com hakkında yapılacak tüm şikayetlerde ilgili adresimizle iletişime geçilmesi halinde kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde gereken işlemler yapılacaktır. İletişime geçmek için buraya tıklayınız.