Geri Git   ForumSinsi - 2006 Yılından Beri > Eğitim - Öğretim - Dersler - Genel Bilgiler > Eğitim & Öğretim

Yeni Konu Gönder Yanıtla
 
Konu Araçları
etkitepki, hareket, iii, newtonun, yasası

Newton'un İii. Hareket Yasası (Etki-Tepki Yasası)

Eski 10-10-2012   #1
Prof. Dr. Sinsi
Varsayılan

Newton'un İii. Hareket Yasası (Etki-Tepki Yasası)



Newton'un III Hareket Yasası (Etki-Tepki Yasası)

Eğer bir cisme herhangi bir büyüklükte bir kuvvet etkirse, cisim de bu kuvvete eşit fakat zıt yönde bir tepki gösterir Burada ortaya çıkan etki-tepki kuvvetlerinin büyüklükleri eşittir fakat yönleri birbirine zıttır






Örneğin bir futbol topu şekilde olduğu gibi duvara doğru yönlenmiş olsun Top aşağıdaki şekildeki gibi duvara çarptığında topun duvara uyguladığı kuvvetle aynı büyüklükte fakat zıt yönde bir kuvvet de duvar tarafından topa uygulanır Yani uygulanan kuvvetler;

şeklinde ortaya çıkar





Bütün cisimlerin kütlelerinin birbirlerini çektikleri bilinmektedir Dünya ile Ay bu konuda güzel bir örnektir Dünya, Ay'ı F kuvveti ile çekiyorsa Ay'da Dünyayı aynı büyüklüğe sahip kuvvet ile çekmektedir Aynı şekilde bir masanın üzerindeki bir bilgisayar masaya bir kuvvet uygularken masa da bu kuvvetin ters yönünde bilgisayara aynı büyüklükte bir kuvvet uygulamaktadır Bu bütün cisimler için geçerlidir

SÜRTÜNME KUVVETİ
Bir cismi farklı yüzeylerde hareket ettirmenin, cismin hareketinde değişiklikler yaptığını günlük yaşantımızdan bilmekteyiz Pürüzlü, kaygan veya cilalı yüzeylerde aynı cismin hareketi farklı farklı olmaktadır Cam üzerinde bir cisim daha kolay hareket ederken tahta üzerinde hareket etmesi daha zordur
Cismin hareket ettiği yüzeyin pürüzlü olması, cismin harekete geçmesini zorlaştırırken, düz veya pürüzsüz yüzeylerde aynı cisim daha kolay harekete geçer Bu nedenle halı, tahta, taşlı zemin gibi yüzeylerde cismi harekete geçirmek için gerekli olan kuvvet; cam, asfalt, yağlı zemin gibi yüzeylerdeki aynı cismi hareket ettirmek için gerekli olan kuvvetten daha büyüktür Yani cismin temas ettiği yüzeyin pürüzlüğü arttıkça, cismin harekete geçmesi için gerekli olan kuvvete artmaktadır

Şekilde olduğu gibi iki traktör yolda gitmektedirler Bu traktörlerden bir tanesi asfalt yolda giderken diğer taşlı bir yolda gitmektedir Taşlı yolda giden traktörle düz yolda giden traktörün aynı hızda gitmeleri için taşlı yoldaki traktörün daha fazla kuvvet kullanması gerekmektedir
Bir zemin üzerinde bulunan bir cismi harekete geçirmek için, yüzeyin cisme uygulanan hareketin zıt yönünde oluşan sürtünme kuvvetinden daha büyük bir kuvvete gereksinim vardır Aksi taktirde uygulanan kuvvet cismin sürtünme kuvvetinden daha küçük veya eşitse cisim harekete geçmez
Sabit hızla hareket eden bir cisme etkiyen sürtünme kuvveti ile harekete geçirici kuvvetin bileşkesi sıfırdır Çünkü cismi harekete geçirici kuvvet ile sürtünme kuvveti ters yöndedir
Bu bilgilerden hareketle; cisimler hareket ederken temas ettikleri yüzeylerin sürtünmesinden kaynaklanan ve yer değiştirmeye zıt yönde ortaya çıkan kuvvete sürtünme kuvveti denir
Sürtünme Kuvvetinin Bağlı Olduğu Etkenler
a) Yüzeyin pürüzlü olması
Cismin hareket edeceği yüzeyin pürüzlü olması cismin hareketinde önemlidir Pürüzlü yüzeylerde cisimlerin hareket etmesi için daha büyük kuvvete ihtiyaç vardır
Bütün yüzeylerde mutlaka pürüz vardır Cisimler birbiri üzerinde hareket ederken, yüzeylerindeki girinti ve çıkıntılar birbirinin içerisine girerek cismin hareket etmesini güçleştirirler Cilalı yüzeylerde bu girinti-çıkıntılar daha az olduğundan sürtünme kuvveti de o oranda azdır Bu nedenle pürüzlü yüzeylerin yağlanması ile bu girintiler azaltılarak daha az sürtünme kuvveti uygulaması sağlanabilir
b) Cismin ağırlığı
Bir cismin ağırlığı arttığında cismin ve yüzeyin girinti-çıkıntıları daha fazla birbiri içine gireceğinden sürtünme de artar Yani cismin hareketini engelleyen kuvvetin büyüklüğü de artar Cismin hareket etmesini engelleyen bu kuvveti yenmek için, bu kuvvetten daha büyük bir kuvveti cisme uygulamak gerekir
Sürtünme Kuvvetinin Etkileri
Sürtünme kuvveti, cisimlerin yüzeyde tutunmasına yardım eden bir etkendir Eğer sürtünme kuvveti var olmasaydı birçok yaşamsal faaliyet mümkün olmazdı Yolda yürüyemez, bir yerde oturamaz, yemek yiyemez, yazı yazamaz, araç kullanamazdık Örneklerde de görüldüğü gibi her türlü hayati olayın gerçekleşmesinde sürtünme kuvvetinin etkisi vardır Araba örneğini biraz açacak olursak, yolda hareketine başlayan bir aracın durması sürtünme kuvvetinin etkisi ile oluşmaktadır Bu kuvvet olmasaydı frenler tutmayacağı için araba sürekli hareket ederdi
Buzun sürtünme kuvvetinin toprak veya asfalta göre daha düşük bir sürtünme kuvveti olduğu bilinmektedir Kışın buzlu yollarda araçlar daha fazla kaymakta ve frenlerin etkisi daha az olmaktadır Bu nedenle kışın meydana gelen kazalar, diğer zamanlara göre daha fazla olmaktadır Bu nedenle kışın buzun erimesi için tuz kullanılması (suyun donma sıcaklığını düşürür) veya toprak atılması bu sürtünme kuvvetini artırmak içindir
Sürtünme kuvvetinin hayatımızı kolaylaştıran çok büyük etkilerinin yanında günlük yaşantıda işleri zorlaştırdığı da bilinmektedir Çünkü sürtünme kuvvetini yenerek, cisimleri harekete geçirmek için daha büyük kuvvet kullanılması gerekir Ve büyük yükleri, sürtünme kuvveti nedeni ile kas gücümüzle hareket ettiremeyiz Bundan dolayı çeşitli makineler kullanarak bu yükleri hareket ettiririz
Makineler çalışırken, içerisindeki parçalar birbirine sürtünürler Sürtünen bu parçalar zamanla aşınarak kullanılmaz hale gelirler Makinelerin yıpranmasını engellemek için sürtünme kuvvetini düşürücü önlemler almak gerekir Yani sürtünme kuvvetinin çok büyük yararları olmakla beraber bazı zorlukları da vardır
Sürtünme Kuvvetini Artırmak ve Azaltmanın Yolları
Sürtünme kuvvetinin, bir olayın gerçekleşmesi için yetersiz kaldığı durumlarda alınması gereken tedbirler vardır Bunlardan bazılarını sıralayacak olursak;
a) Kışın araba lastiklerine zincir takılması,
b) Sporcuların ayakkabılarının altına dişler yapılması,
c) İş makinelerinin tekerlerinde dişlerin daha büyük yapılması,
d) Büyük kütlelerin altına tekerlek tipinde cisimlerin konulması,
e) Makinelerin yağlanması,
f) Dik yokuşlarda ulaşımı kolaylaştırmak için önlemler alınması,

SERBEST DÜŞME VE YER ÇEKİMİ
Aynı yüke sahip cisimlerin birbirini ittiği, zıt yüklerin ise birbirini çektiği bilinmektedir Mıknatıslarında aynı kutupları birbirini iterken, zıt kutuplar birbirini çekmektedir Yüklü cisimlerin bu şekilde birbirini etkileme kuvvetlerine elektrik kuvvetleri, mıknatısların etkileşme kuvvetlerine ise magnetik kuvvetler denir Bu kuvvetlerin dışında hayatımızı etkileyen bir diğer kuvvet daha vardır Buna da kütle çekim kuvveti denir
Kütle Çekim Kuvveti
Kütlelerin birbirine karşı çekim kuvvetleri vardır Karşı karşıya gelen iki cisim birbirine çekim kuvveti uygular Her gün baktığımız ayna ile bizim aramızda, yan yana olan iki bina arasında ve dünya ile ay arasında bu kuvvet vardır Büyüklükleri arasında çok fazla fark olmayan cisimler arasındaki kütle çekim kuvveti hissedilemezken, büyük farka sahip kütlelerin birbirine uyguladıkları çekim kuvveti ölçülebilecek düzeydedir Örneğin ayna ile bizim aramızdaki kütle çekim kuvveti çok küçük olmasına rağmen, dünya ile araba arasındaki kütle çekim kuvveti ölçülebilecek seviyededir

OKUMA PARÇASI Kütle Çekim Kuvveti

Yukarı atılan bir cisim, bir süre sonra döner ve yere düşer Irmaklar hep yukarıdan aşağıya doğru akar Bunun açıklamasını "yerçekimi" olarak yaparız Bu, tüm kütleli nesnelerde, gezegenlerde ve yıldızda varolan bir kuvvettir ve ona "kütle çekimi" diyoruz

Bu çekim, en yoğun cisimleri ve "boşluğu" eşit oranda donatır Ondan korunmanın ya da onu etkilemenin hiçbir yolu yok Uzaklıkla azalır; ama hiçbir şekilde kaybolmaz Atmosferi Yerküre'nin çevresinde tutan kuvvet ya da bizim Evren boşluğuna uçup gitmemizi engelleyen kuvvet, Dünya'nın uyguladığı kütle çekimi kuvvetidir

Bir yapma uyduyu, Dünya yörüngesine yerleştirmek için gerekli hız, saniyede 8 kilometreden (8 km/s) az değildir Dünya'nın çekiminden kurtulmak ve onu temelli terk etmek için saniyede 112 kilometre hız yapmak gerekir Güneş'in kütle çekimi daha büyüktür Çünkü Güneş'in kütlesi, Dünya'nınkinin 400 bin katıdır Güneş'in kütlesel çekimini aşabilmek için saniyede 167 kilometrelik hız gerekir

Kuşkusuz insanoğlu çok eski zamanlarda da kütle çekimini sezmiş ve onu hesaba katmış olmalı İlginçtir, bilinen bu eski kuvvet, çağlar boyu açıklanamamış olarak kaldı Kütle çekimi için bilimsel bir kuram geliştiren ve bunu Evren'i kapsayacak kadar genişleten, büyük İngiliz bilimcisi Sir Isaac Newton (1642-1727) idi

Masa üzerindeki bir kitabı inceleyelim Kitaba herhangi bir etki olmadıkça kitap, masa üzerinde hareketsiz kalır Şimdi, kitabı yatay doğrultuda sürtünme kuvvetini yenecek büyüklükte bir kuvvetle sağa doğru itelim Sürtünme kuvveti kitapla masa arasında varolan bir kuvvettir

Kitaba uygulanan kuvvet, sürtünme kuvvetine eşit ve zıt yönlü ise kitap sabit bir hızla hareket edebilecektir Uygulanan kuvvet sürtünme kuvvetinden büyükse kitap ivmelenir Uygulanan kuvvet ortadan kalkarsa sürtünme kuvvetinin etkisi ile kısa bir süre hareket ettikten sonra durur (negatif ivmelenme sonucu)

Şimdi, kitabın karşıdan karşıya kaygan hale getirilmiş yüzeyde itildiğini düşünelim Kitap, yine duracak fakat önceki durumda olduğu gibi çabucak durmayacaktır Döşemeyi, sürtünmeyi tamamen ortadan kaldıracak kadar cilalar, parlatırsanız kitap, bir defa harekete geçtikten sonra, karşı duvara çarpıncaya kadar aynı hızla hareket edecektir

Galileo, cisimler hareket halinde iken, durmaya ve hızlanmaya direnme (eylemsizlik) tabiatına sahip olduğu sonucuna da varmıştı Bu yeni yaklaşım daha sonra Newton tarafından formülleştirilerek, kendi adıyla anılan Newton'un "Birinci Hareket Yasası" olarak tanımış ve şöyle ifade edilmiştir: "Bir cisme bir dış kuvvet (bileşke kuvvet) etki etmedikçe, cisim durgun ise durgun kalacak, hareketli ise sabit hızla doğrusal hareketine devam edecektir"

Daha basit bir anlatımla, bir cisme etki eden net kuvvet sıfırsa ivmesi de sıfırdır Newton'un birinci yasası, bir cisme etki eden dış kuvvetlerin bileşkesi sıfır olduğu zaman cismin davranışındaki değişmeleri inceler Bir cisim üzerine sıfırdan farklı bir bileşke kuvvet etki ettiği zaman neler olur? Bu sorunun yanıtını Newton'un ikinci yasası verir

Çok düzgün, cilalı, parlatılmış yatay bir yüzey üzerinde, sürtünme kuvvetini önemsemeyerek bir buz kalıbını ittiğinizi düşünün Buz kalıbı üzerinde yatay bir F kuvveti uygularsanız, kalıp "a" ivmesi ile hareket edecektir Kuvveti iki katına çıkarırsanız ivme de iki katına çıkacaktır Bu tür gözlemlerden bir cismin ivmesinin, ona etkiyen bileşke kuvvet ile doğru orantılı olduğu sonucuna varırız

Peki bileşke kuvveti aynı tutarken cismin kütlesini iki katına çıkarırsak ne olur? İvme yarısına düşer; üç katına çıkarılırsa üçte birine düşer Bu gözleme göre, bir cismin ivmesinin kütlesi ile ters orantılıdır Buna göre Newton'un ikinci yasası şöyle anlatılabilir: "Bir cismin ivmesi, ona etki eden kuvvetle doğru orantılı, kütle ile ters orantılıdır"

Elbette ki gezegenler, Kepler Yasalarına göre hareket ediyordu Ama neden gezegenler değişik ve üstelik düzgün bir hızla hareket etmiyordu? Gezegenlerin gökyüzünde hareket etmeleri için onları "iten" bir gücün olması gerektiği düşünülüyordu Ama bu güç neydi? Newton'un yaşadığı dönemde hiç olmazsa birçok insan astrolojiyi ciddiye almıyordu; yani gezegenleri meleklerin itmediği kesindi Newton, Kepler'in formüllerini çıkarmak için kütlesel çekim (gravitasyonal alan) yasasını kullanmıştı

Newton, Galileo'nun sarkaç deneylerini inceledi ve buradan boşlukta serbestçe dolaşan gezegenlere etkiyen bir çekimin bulunması gerektiği sonucuna kolayca vardı Çünkü o, düşünür ve matematikçiydi Gezegenler, eliptik yörüngeler izliyordu Bu yörüngeler üzerinde dolanırken Güneş'e daha yakın oldukları yerlerde hızları artıyor, sonra Güneş'ten uzaklaştıkça hızları azalıyordu

Newton, kuvvet bilinirse, bunu kütle denen büyüklüğe bölünce ivmenin bulunabileceğini varsaymıştır Burada kütle, harekete karşı koymanın bir çeşidi olarak görünür: kütlesi bir başka arabanınkinin iki katı olan çok yüklü bir araba, aynı beygirin etkisi altında birincinin yarısı kadar bir ivme kazanır
Kısacası kütle, hareket edenin eylemsizliğini bildirir ve bu yüzden ona "eylemsizlik kütlesi" adı verilir Buna göre her cismin, olanaklı bütün kuvvetlere karşı gösterebileceği tepkiyi belirleyen özel bir eylemsizliği vardır Bunu saptadıktan sonra geriye kuvvet denen şeyin ne olduğunu anlamak kalıyordu

Newton kuvveti şöyle tanımlıyor: Kuvvet, cisimleri hareketsizlik durumu ya da düzgün hareketi değiştirecek biçimde etkileyen bir eylemdir merkezcil bir kuvvet, cisimleri bir merkeze ya da belli bir noktaya doğru çeker ya da çekilme eğilimi içinde bulunmalarına yol açar

Böylece Dünya, Ay'ı etkilediği zaman ona bir kuvvet uyguluyordu Ay, Dünya'dan ne kadar uzaksa bu kuvvet de o kadar zayıftı Daha kesin olarak söylenirse Newton, uzaklık iki kat olunca, kuvvetin ilk değerinin dörtte birine indiğini varsaydı İki madde birbirlerini kütlelerinin çarpımı ile doğru aralarındaki uzaklığın karesi ile ters orantılı bir kuvvetle çeker Bunların hepsi çekim sabiti denen evrensel bir sabitle çarpılır

İki elektrik yükü arasındaki kuvvet de aralarındaki uzaklığın karesi ile ters orantılıdır ama; bunun kütle ile hiçbir ilgisi yoktur "Evrensel kütle çekimi yasası"nda, kütlenin rolünün birden değiştiğine dikkat edelim Kütlenin bu yeni görevini iyice belirtmek için, ağırlık katsayısı (çekim sabiti) ortaya çıktığında buna "çekim kütlesi" denmesi uygun görüldü O halde Newton'un varsayımı şöyle dile getirilebilir: Çekim kütlesi, eylemsizlik kütlesine eşittir
Bu özelliğin, ister Ay kadar büyük, isterse Ay modülü kadar küçük olsun bir gök cisminin yörüngesinin kütlesinden bağımsız olarak aynı olduğu sonucunu vermesi ilginçtir Newton, kütle çekimi yasasını çok farklı olaylara uyguladı ve onu bilinen Evrenin tümünü kapsayacak şekilde cesaretle yaygınlaştırdı Merkür'ün yaramazlığı dışında bir sorunla karşılaşmadan 200 yıl kendini korudu

Kütle çekim alanlarının temel nitelikleri şöyle sıralanabilir:
  • Kütle çekim kuvvetleri Evrenseldir Yani Evrendeki her cisim bu kuvvetlerden etkilenir
  • Bir kütle çekim alanı mutlaka çekici kuvvetlere neden olur
  • Kütle çekim alanları, uzun erimlidir; yani bir cismin etrafında oluşan çekim alanının etkileri zayıflayarak da olsa çok uzak mesafelere kadar uzanabilir
"Duran iki cisim düşünüldüğünde, bu iki cismin birbirine etki ettirdiği çekim kuvveti; cisimlerin arasındaki uzaklığın karesi ile ters, cisimlerin kütleleri ile doğru orantılıdır" Newton böylece doğanın temel sabitlerinden birini de bulmuştu

Newton, bir matematik sihirbazıydı Çünkü çok uzun süre onun dışında kimse diferansiyel denklemlerin içinden çıkamıyordu Newton'dan 60 - 70 yıl önce, büyük Alman bilim adamı Johannes Kepler (1571-1630), gezegenlerin Güneş çevresindeki hareketlerini yöneten temel yasaları bulmuştu

Tarihçe kısaca şöyledir: Eski bilginler gezegenlerin gökyüzündeki hareketlerini gözlemleyerek onların Dünya ile birlikte Güneş çevresinde döndüğü sonucuna vardılar Bu sonuç daha sonra Copernicus tarafından da bağımsız olarak keşfedildi İnsanlar keşfin daha önce yapıldığını unutmuşlardı Bundan sonra araştırılacak soru şuydu: Güneş çevresinde tam olarak nasıl dönüyorlardı?

Güneş’in merkez olduğu bir çember üzerinde mi, yoksa başka bir eğri boyunca mı? Hızları neydi? Bunların yanıtlanması daha zun zaman aldı Copernicus sonrası dönemler, gezegenlerin gerçekten Dünya’yla birlikte Güneş etrafında mı döndükleri, yoksa Dünya’nın Evren!in merkezinde mi olduğu sorularının tartışıldığı dönemlerdi

Daha sonra Danimarkalı astronom Tycho Brahe (1546-1601), soruyu yanıtlamak için bir yöntem önerdi Eğer gezegenler çok dikkatle gözlenip gökyüzündeki yerleri tam olarak kaydedilirse, teorilerin durumu belki açıklığa kavuşabilirdi Bu, modern bilimin anahtarı ve doğanın gerçekten anlaşılmasının başlangıcı oldu: bir şeyi gözlemek, ayrıntıları kaydetmek ve bu bilgilerin şu veya bu yorumu çıkarmayı sağlayacak ipuçlarını içerdiğini ummak

Zengin bir kişi olan Tycho’nun Kopenhag yakınlarında bir adası vardı Buraya pirinçten yapılmış kocaman daireler yerleştirdi ve özel gözlem yerleri yaptırdı; sonra, geceler boyunca gezegenlerin konumlarını kaydetti İşte ancak bu tür yorucu ve yoğun çalışmalar yoluyla bir şeyler bulunabilir

Toplanan bütün bilgi Kepler’in eline verildi; o da gezegenlerin Güneş etrafında ne türlü bir hareket yaptığını incelemeye koyuldu Bunun için deneme yanılma yöntemini uyguladı Bir ara yanıtı bulduğunu sandı: Gezegenler, Güneş’in merkez olduğu çemberler üzerinde hareket ediyorlardı Ancak daha sonra bir gezegenin, Mars’ın sekiz dakikalık bir yay kadar sapma yaptığını fark etti
Kepler, Tycho Brahe’nin bu ölçüde bir hata yapamayacağını düşünüp, yanıtın doğru olmadığı sonucuna vardı Deneylerin çok dikkatli yapılmış olması nedeniyle başka bir yol deneyerek sonunda üç şey keşfetti İlk olarak, gezegenler Güneş’in odak olduğu elips şeklinde bir yörünge izliyorlardı

Elips bütün ressamların bildiği bir eğridir: basık bir daire Çocuklar da onu iyi bilir; iki ucu tespit edilmiş bir ipe bir halka geçirip halkaya da bir kalem sokulunca elips çizilebileceğini birileri onlara söylemiştir
İkinci olarak, bir gezegenin Güneş çevresindeki yörüngesi bir elipstir; Güneş de odakların birindedir Bundan sonra gelen soru şuydu: Güneş’e yaklaştıkça hızı artıyor, uzaklaştıkça yavaşlıyor mu?

Kepler, bunun da yanıtını buldu Bulduğu yanıt şöyle açıklanabilir: Örneğin üç hafta gibi belirli bir ara içeren iki farklı zamanda gezegenin konumun saptayalım Sonra, yörüngenin başka bir bölümünde, gezegenin yine üç hafta ara ile iki ayrı konumunu saptayalım ve Güneş’le gezegeni birleştiren doğruları çizelim (bilimsel deyimiyle bunlar yarıçap vektörleridir)

Üç hafta ara ile çizilen iki doğru ve yörünge arasında kalan alan, yörüngenin her bölgesi için aynıdır Demek ki, gezegen Güneş’e daha yakın olduğu yerlerde daha hızlı hareket ediyor ve uzaklaştıkça aynı alanı taramak için daha yavaş ilerliyor
Birkaç yıl sonra Kepler, üçüncü bir kural keşfetti Bu kural yalnızca tek bir gezegenin Güneş çevresindeki hareketiyle ilgili değildi; farklı gezegenler arasında da ilişki kuruyordu Bu kurala göre, bir gezegenin Güneş çevresinde tam bir devir yapması için gereken zaman, yörüngenin boyutuna bağlıdır; bu zaman da yörüngenin boyutunun küpünün kare kökü ile orantılıdır Yörüngenin boyutu elipsin en büyük çapıdır

Kepler’in bu üç yasası şu şekilde özetlenebilir: Yörünge bir elipstir; eşit sürelerde eşit alanlar taranır ve bir devir için geçen süre, boyutun üç bölü ikinci kuvvetiyle orantılıdır; yani boyutun küpünün kareköküyle Kepler’in bu üç yasası gezegenlerin Güneş çevresindeki hareketlerini tam olarak belirlemektedir

Bundan sonraki soru şuydu: Gezegenleri Güneş çevresinde hareket ettiren şey nedir? Keplerle aynı dönemde yaşamış bazı kişiler bu soruyu şöyle yanıtlıyorlardı: Melekler kanatlarını çırparak gezegenleri arkadan yörünge boyunca iterler Daha sonra göreceğiniz gibi bu yanıt gerçeğe pek de uzak sayılmaz Tek fark, meleklerin farklı yönlerde oturup kanatlarını içeriye doğru çırpıyor olmalarıdır

Aynı sıralarda Galileo da Dünya’daki sıradan cisimlerin hareket kurallarını inceliyor, bu inceleme sırasında da bazı deneyler yapıyordu Toplar eğik bir düzlemden aşağı doğru nasıl yuvarlanıyor, sarkaçlar nasıl sallanıyordu?Galileo "eylemsizlik ilkesi" denilen önemli bir kural keşfetti
Kural şuydu: Düz bir doğru üzerinde belirli bir hızla hareket eden bir cisim, hiçbir etken olmazsa bu doğru boyunca, aynı hızla, sonsuza kadar gitmeye devam edecektir Bir topu durmamacasına yuvarlamaya çalışmış olan herkes için buna inanmak güç olsa da; bu ideal şartların varlığında, yerdeki sürtünme gibi etkenler olmasa, top gerçekten de düzgün bir hızla sonsuza kadar gidecektir

Daha sonraki gelişme Newton’un şu soruyu tartışması ile başladı: Eğer cisim düz bir doğru boyunca hareket etmiyorsa ne olur? Buna verdiği yanıt da şu oldu: Hızı herhangi bir şekilde değiştirmek için kuvvet uygulamak gerekir Örneğin, bir top hareket ettiği yönde itilirse hızı artar
Eğer gidiş yönü değişmişse kuvvet yandan uygulanması gerekir Kuvvet iki etkinin çarpımı ile ölçülebilirUfak bir zaman aralığında hızının ne kadar değiştiği, "ivme" olarak tanımlanır Bunu cismin kütlesi veya eylemsizlik katsayısı ile çarparsak kuvveti buluruz Bu ise ölçülebilir
Örneğin bir ipin ucuna bağlanmış bir taşı başımızın üzerinde döndürürsek, ipi çekmemiz gerektiğini fark ederiz Nedeni şudur: Taşın hızı sabit olmakla birlikte, bir çember çizerek döndüğü için yönü değişmekte, bu nedenle de taşı sürekli içeriye doğru çekin bir kuvvet gerekmektedir; bu kuvvet de kütle ile orantılıdır

Şimdi iki ayrı taş alıp önce birini sonra diğerini döndürelim ve ikinci taş için gereken kuvveti ölçelim Bu kuvvet, birinciden, kütlelerinin farklılığıyla orantılı olarak daha büyük olacaktır Hızı değiştirmek için gereken kuvveti saptamak, kütleyi ölçmek için bir yöntem oluşturur
Newton, bundan bir başka sonuç çıkardı Onu da basit bir örnekle açıklayalım: Eğer bir gezegen Güneş çevresinde bir çember boyunca gidiyorsa, onun yana doğru, teğet boyunca gitmesi içi kuvvete gerek yoktur Eğer herhangi bir kuvvet olmasaydı başını alır giderdi

Ancak gezegen bunu yapmıyor;kuvvetin olmaması durumunda bir süre sonra gitmiş olacağı ta uzaklarda değil, Güneş’e yakın bir yerde bulunuyor Başka bir deyişle,hızı ve hareketi Güneş’e doğru sapıyor; yani meleklerin, kanatlarını sürekli Güneş’e doğru çarpmaları gerekiyor

Bir gezegenin düz bir doğru boyunca hareket etmesinin bilinen bir nedeni yoktur Nesnelerin sonsuza dek gitmeyi sürdürmelerinin nedeni bulunamamıştır Eylemsizlik Kuramı'nın da bilinen bir kökeni yoktur Melekler gerçek olmasa da hareketin süregittiği bir gerçektir
Ancak,düşme olgusu için kuvvete gereksinim vardır ve kuvvetin kökeninin Güneş’e doğru olduğu da anlaşılmıştır Newton, eşit sürelerde eşit alan taranması kuramının, hızdaki bütün değişmelerin Güneş yönünde olduğu savının doğrudan bir sonucu olduğunu; bunun eliptik yörünge için de geçerli olduğunu göstermeyi başardı

Bu yasayı kullanarak Newton, kuvvetin Güneş yönünde olduğunu ve eğer gezegenlerin periyotlarının Güneş’ten olan uzaklıklarıyla nasıl değiştiği bilinirse, bu kuvvetin uzaklık ile nasıl değiştiğinin de bulunabileceğini gösterdi ve kuvvetin, uzaklığın karesi ile ters orantılı olduğunu saptadı
Buraya kadar Newton, pek bir şey söylemiş sayılmaz; çünkü yalnızca Kepler’in ifade ettiği iki şeyi farklı biçimde dile getirmiş oluyordu birincisi, kuvvetin Güneş yönünde olduğunu söylemekle; ikinci de kuvvetin, uzaklığın karesi ile ters orantılı olduğunu söylemekle aynı şeydi

İnsanlar Jüpiter’in uydularının Jüpiter çevresinde nasıl hareket ettiklerini teleskopla görmüşlerdi bu hareket tıpkı Güneş Sistemi'nde olduğu gibiydi; sanki uydular Jüpiter’e doğru çekiliyorlardı Ay da Dünya’nın çekimindedir; Dünya’nın çevresinde döner ve Dünya’ya doğru çekilir Sanki her şeyin birbirinin çekimi altındaymış gibi görünmesi bir sonraki kuramı; genelleme yapacak olursak her cismin her cismi çektiği yolunda olması sonucunu getirdi

Eğer bu doğru ise, Güneş'in gezegenleri çektiği gibi dünya da Ay’ı kendisine doğru çekiyordu Dünya’nın cisimleri çektiği bilinen bir şeydi (hepimiz havada uçmak istesek de iskemlemizde sık sıkı oturduğumuzu biliyoruz) Yeryüzü'ndeki çekim, yerçekimi olgusu olarak iyi bildiğimiz bir şeydir

Newton, Ay’ı yörüngede tutan çekimin, nesneleri Dünya’ya çeken kuvvetle aynı şey olabileceğini düşündü Daha sonra Newton birçok yeni şey ortaya çıkardı Çekim Yasası'nın ters kare olması durumunda yörüngenin şeklinin ne olacağını hesapladı ve bunu bir elips olarak buldu

Ayrıca birçok farklı olaya da açıklama getirildi Bunlardan biri gel-git olayıydı Gel-git, Dünya ve denizlerin Ay tarafından çekilmesinden kaynaklanıyordu Bu, daha önceleri de düşünülmüştü; ancak ortada bir pürüz vardı: Olay, Ay’ın denizleri çekmesinden kaynaklanıyorsa Ay’ın bulunduğu taraftaki sular yükselecek, o zaman günde ancak bir gel-git olacaktı

Gerçekte ise yaklaşık on iki saatte bir, yani günde iki gel-git olduğunu biliyoruz Farklı bir sonuca varan bir düşünce ekolü daha vardı Buna göre de Dünya, Ay tarafından suyun dışına çekiliyordu Gerçekte ne olup bittiğini ilk fark eden Newton oldu: Ay’ın aynı uzaklıktaki kara ve denizler üzerindeki çekim kuvveti aynıydı

Gerçekte Dünya da Ay gibi bir çember boyunca hareket eder Ay’ın Dünya’ya uyguladığı kuvvet dengelenmiştir; ama dengeleyici nedir? Ay’ın Dünya’nın çekim kuvvetini dengelemek için dairesel bir yörünge üzerinde hareket etmesi gibi, Dünya da dairesel bir yörünge üzerinde hareket etmektedir Bu dairenin merkezi Dünya’nın içinde bir noktadadır ve Ay’ın kuvvetini dengelemek için dairsel bir hareket yapmaktadır

İkisinin de ortak bir merkez etrafında dönmesiyle, Dünya açısından kuvvetler dengelenmiş oluyor; ancak bir yöndeki su öteki yöndekine göre daha çok çekildiği için su iki yanda da kabarıyor Gel-git olayı ve günde iki kez gerçekleşmesinin nedeni böylece açıklanmış oluyordu Bu arada açıklanan daha birçok şey vardı: Dünya, her şey içe doğru çekildiği için yuvarlaktı; kendi ekseni etrafında döndüğü için de yuvarlak değildi Dış bölgeler biraz uzağa itilmişlerdi ve denge oluşuyordu

Bilim ilerleyip daha hassas ölçümler yapıldıkça "Newton Yasası" da daha zorlu sınamalarla karşılaştı Bunlardan ilki Jüpiter'in gezegenleriyle ilgiliydi Uzun süre dikkatle yapılmış gözlemlerle hareketlerinin Newton Yasası'na uyumu saptanabilirdi Ancak sonuç bunun doğuru olmadığını gösteriyordu
Jüpiter’in gezegenleri, Newton Yasası ile hesaplanmış zamana göre, bazen sekiz dakika ileri, bazen sekiz dakika geri olan bir fark oluşturuyorlardı Bu fark Jüpiter’in Dünya’ya yakın olduğu zamanlarda ileri, uzak olduğu zamanlarda ise geriye doğruydu Bu tuhaf bir durumdu

Yerçekimi yasasına güveni tam olan Danimarkalı astronom Roemer (1644-1710), bu durumda ışığın Jüpiter’in gezegenlerinden Dünya’ya gelmesinin zaman aldığı gibi ilginç bir sonuç çıkardı Ayrıca bu gezegenlere baktığımız zaman gördüğümüz şey onların o andaki durumu değil, ışığın bize gelmesi için geçen zamandan önceki durumuydu

Jüpiter bize yakın olduğunda ışık daha kısa sürede, uzak olduğunda ise daha uzun sürede geliyordu Bu neden Roemer’in gözlemleri zaman farkı yönünden şu kadar erken, bu kadar geç olmalarına göre düzeltilmesi gerekiyordu Bu yolla ışığın hızını ölçmeyi başarmış, ışığın bir anda yayılan bir şey olmadığını da ilk kez göstermiş oldu

Eğer bir yasa doğru ise başka bir yasanın bulunmasına da yol açabilir Eğer bir yasaya güveniyorsak, ona ters bir şeyin ortaya çıkması bizi başka bir olguya doğru yöneltir Yerçekimi yasasını bilmeseydik Jüpiter’in gezegenlerinden ne bekleyeceğimizi de bilemezdik; ışığın hızını ölçmek ise çok daha sonralara atılmış olurdu

Bu süreç, adeta bir keşifler çağına yol açtı Her yeni keşif, bir yenisine daha yol açan araçları da beraberinde getirir 400 yıldan beri süregelen ve büyük bir hızla sürmele devam edecek olan bu çağ, işte bu şekilde başlamıştır

Daha sonraları ortaya yeni bir sorun çıktı Newton Yasası'na göre gezegenler yalnızca Güneş’in çekiminde değildi; birbirlerini de biraz çekiyorlardı Öyleyse yörüngeleri eliptik olmamalıydı Gerçi bu küçük bir çekimdi; ancak "küçük" olan da önem taşıyabilir ve hareketi etkiler
Jüpiter, Satürn ve Uranüs’ün büyük gezegenler oldukları biliniyordu Her birinin diğerleri üzerindeki çekimi sonucu, yörüngelerinin Kepler’in kusursuz elipslerinden ne ölçüde farklı olduğunu saptayacak hesaplar ve gözlemler yapıldı Sonuçta Jüpiter ve Satürn’ün hesaplamalara uygun hareket ettikleri; Uranüs’ün ise ‘tuhaf’ davrandığı ortaya çıktı

Adams ve Leverrier adındaki iki astronom, birbirinden bağımsız olarak yaptıkları çalışmalar sonucunda neredeyse aynı anda, Uranüs’ün hareketlerinin görünmeyen bir gezegenden etkilendiğini iler sürdüler Her biri kendi gözlemevine "teleskopunuzu çevirin ve orayı gözleyin yeni bir gezgen göreceksiniz" şeklinde birer mektup yolladılar

Gözlemevlerinden birinin tepkisi "Saçma! Eline kalem kağıt alıp oturan biri, bize gezegen bulmak için nereye bakacağımızı söylüyor" şeklindeydi Diğer gözlemevinin yöntemi farklıydı ve Neptün’ü buldu
20 yy’ın başlarında Merkür’ün hareketinin tam da "doğru" olmadığı anlaşıldı Einstein, Newton Yasalarının biraz hatalı olduğunu ve değiştirilmeleri gerektiğini gösterinceye dek bu durum hayli sıkıntıya yol açtı Şimdi de bu yasanın kapsamının genişliği sorusu ortaya çıkıyor

Yasa, Güneş Sistemi dışında da geçerli midir? Galaksimizi bir arada tutan şey, yıldızlar arasındaki çekim kuvvetidir Dünya'dan Güneş'e olan uzaklık sekiz ışık dakikası olduğu halde, galaksilerin uzunlukları 50000-100000 ışık yılıdır Ancak çekim kuvvetinin bu büyük yıldız yığınlarında, bu ölçekteki uzaklıklarda bile geçerli olduğundan kuşkulanmak için bir neden yoktur
Çekim kuvvetinin varolduğunu doğrudan kanıtlayabileceğimiz uzaklık bu kadar; yani Evren'in büyüklüğünün onda biri veya yüzde biri kadar uzaklıktır Buna göre, gazetelerde bir şeylerin Dünya'nın çekim kuvveti dışına çıktığına ilişkin haberler okusanız da, Dünya'daki yerçekiminin kesin bir sonu yoktur

Bu yerçekimi, uzaklığın karesi ile ters orantılı olarak giderek zayıflar; uzaklık iki katın çıkınca o da dört kat zayıflar ve böylece diğer yıldızların güçlü alanlarının karmaşasında kaybolur Çevresindeki yıldızlarla birlikte başka yıldızları çekerek galaksi oluşturur; bu galaksi de diğer galaksileri çekip bir galaksiler kümesi oluşturur Böylece Dünya'nın çekim alanı hiç bitmez; ancak belirli ve düzenli bir şekilde zayıflayarak belki de Evren'in sınırlarına kadar gider

Çekim Yasası, diğer yasaların çoğundan farklıdır Evren'in ekonomisi ve mekanizması için çok önemli olduğu açıktır ve Evren yönünden birçok pratik uygulaması da vardır Ancak, diğer fizik yasalarından farklı tipik bir özelliğe sahiptir: bilinmesi pek az pratik yarar sağlar

Bir galaksiyi oluşturan birçok yıldız değil, sadece gazdır Belki de her şeyi başlatan, bir şok dalgası olmuştur Bundan sonraki olaylar, çekim kuvvetinin etkisiyle gazın gittikçe sıklaşarak toplanması, büyük gaz ve toz yığınlarının ve topların oluşmasıdır Bunlar içeriye doğru düşerken, düşmenin yol açtığı ısıyla yanar ve yıldız haline gelirler

Böylece yıldızlar, çekim etkisiyle gazın sıkışıp bir araya gelmesiyle ortaya çıkıyorlar Yıldızlar bazen patladıklarında toz ve gaz püskürtür, bu toz ve gazlar tekrar bir araya toplanıp yeni yıldızlar yaratırlar

Newton'un Kütle Çekim Kuvveti

Cisimlerin arasındaki kütle çekim kuvvetine ilişkin ilk hesaplamaları Newton yapmıştır Bu nedenle buna Newton Genel Çekim Yasası denir Newton yasasına göre, cisimlerin kütleleri ne olursa olsun, birbirlerini eşit şiddette ve ters yönde çekerler Diğer bir ifade ile kütleler arasındaki çekim yasası;
a) Cisimlerin kütlelerinin çarpımı ile doğru orantılı,

b) Cisimlerin arasındaki uzaklığın karesi ile ters orantılıdır,
c) Çekim kuvveti, kütleleri birleştiren doğru boyunca ve ters yönlüdür Yani;

Dünyanın cisimlere uyguladığı çekim kuvveti dünyanın merkezine doğrudur Bu çekim kuvvetinin şiddeti ise, cisimlerin kütlelerine göre değişiklik gösterir Dünyanın bir cisme uyguladığı bu çekim kuvvetine cismin ağırlığı denir Cismin kütlesi m, yer çekimi ivmesi g olduğuna göre bir cismin ağırlığı (G);

G = mg' dir



Yer çekimi kuvveti, yerin merkezine doğrudur

Düşen Cisimler ve İvmeleri
Kendi ağırlığının etkisi ile bırakılan cisimler yeryüzüne doğru düşer Bu cisme etki eden kuvvet F=mg olduğundan, yer çekiminin etkisi ile düşen bir cismin ivmesi ise şu şekilde olur;

Buradaki ivme, cismin kütlesine bağlı değildir Dünyanın yerçekimine bırakılan bütün cisimler aynı g ivmesi ile düşerler
F= ma formülünde m 0 1 kg yazıldığında F = g olur Bu ifadeye göre, dünyanın 1 kg'lık kütleye uyguladığı kuvvet yer çekimi olarak tanımlanır SI birim sisteminde ise birimi m/s2 dir Bu ifade yerine newton/kg ifadesi de kullanılmaktadır Yerçekimi ivmesi konumdan konuma değişiklik göstermektedir Ortalama değeri g = 9,8 n/kg' dır Hesaplamalarda kolaylık olması için g =10 N/kg da alınmaktadır
Yerçekimi ivmesi, dünyanın kutuplardan basık olması nedeni ile ve dünyanın kendi ekseni etrafında dönmesi yüzünden dünyanın her tarafında eşit değildir Bunun yanında yerçekimi ivmesi, yeryüzünden yukarılara doğru çıkıldıkça azalmaktadır Aşağıdaki tabloda dünyanın farklı yerlerindeki yerçekimi ivmesi tablo olarak verilmiştir:
YerYükseklik (m)Enlemg (m/s2 = newton/kg)Ankara84040o9,79İstanbul1041o9,80Brüksel10251o9,81Yeni Zelanda337o9,80Kuzey Kutbu090o9,83
Cisimler anı yükseklikten yere bırakıldıklarında aynı sürede yere düşerler Cisimlerin yere düşerken kazanmış oldukları ivme cismin kütlesine bağlı değildir Örneğin, 100 metre yükseklikten yere bırakılan taş, cam ve demir topun kütleleri farklı olmasına rağmen yere aynı anda düşerler
Ağırlık ve Kütle Arasındaki İlişki
Ağırlık, kütle çekimi ile ilgili bir kuvvettir Dünyanın bir cisme uygulamış olduğu kütle çekim kuvvetine cismin ağırlığı denir Bu cismin Ay'da veya Neptün'de olduğu düşünüldüğünde, bu gök cisimlerinin bu cisme uyguladığı çekim kuvvetleri de değişecektir Bu nedenle bir cismin madde miktarı (kütle) aynı kalmasına rağmen ağırlığı dünyada, Ay'da veya diğer gezegenlerde farklı olacaktır
Ağırlığı ölçerken yaylı terazi kullanılırken, kütle ölçmek için eşit kollu teraziler kullanılmaktadır Bir cisme etki eden çekim kuvvetinde değişiklik meydana geldiğinde, yayın da uzamasında değişim olmaktadır Ama çekim kuvveti ne kadar artarsa artsın cismin madde miktarında değişiklik olmayacaktır Örneğin kütlesi 10 kg olan bir cisim dünyada tartıldığında 98 N gelirken, bu cismi Ay'da tarttığımızda 17 N gelecektir Bu da Ay'ın çekim kuvvetinin dünyadan düşük olduğunu göstermektedir



Uzay mekiği ile Ay'a doğru yolculuk yapan bir astronot düşündüğümüzde, bu yolculuk esnasında astronotun kütlesi değişmez Yolculuğun her anında kütlesi eşittir Astronot dünyadan uzaklaşıp Ay'a yaklaştıkça dünyanın uyguladığı çekim kuvveti azalmaya Ay'ın uyguladığı çekim kuvveti ise artmaya başlar Ay ve dünyanın çekim kuvvetlerinin eşit olduğu noktada astronotun ağırlığı sıfır olur





Newton'un III Hareket Yasası (Etki-Tepki Yasası)

Alıntı Yaparak Cevapla
 
Üye olmanıza kesinlikle gerek yok !

Konuya yorum yazmak için sadece buraya tıklayınız.

Bu sitede 1 günde 10.000 kişiye sesinizi duyurma fırsatınız var.

IP adresleri kayıt altında tutulmaktadır. Aşağılama, hakaret, küfür vb. kötü içerikli mesaj yazan şahıslar IP adreslerinden tespit edilerek haklarında suç duyurusunda bulunulabilir.

« Önceki Konu   |   Sonraki Konu »


forumsinsi.com
Powered by vBulletin®
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
ForumSinsi.com hakkında yapılacak tüm şikayetlerde ilgili adresimizle iletişime geçilmesi halinde kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde gereken işlemler yapılacaktır. İletişime geçmek için buraya tıklayınız.