Geri Git   ForumSinsi - 2006 Yılından Beri > Eğitim - Öğretim - Dersler - Genel Bilgiler > Genel Bilgiler

Yeni Konu Gönder Yanıtla
 
Konu Araçları
bilgiler, doğa, evren, hakkında, nelerdir

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Eski 09-11-2012   #1
Prof. Dr. Sinsi
Varsayılan

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?



Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?
Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Doğa-Evren ve Dünya


Göründüğünün tam tersine, evren çok az sayıdaki maddi cisimlere göre çok daha büyük oranda bir boşluktan oluşmuştur: nitekim gökcisimleri, yıldızlar arası boşluk'ta tek tek kalmışlardır Maddenin en küçük düzeyinde, yani atomda da elektronlarla çekirdek arasında oldukça büyük bir boşluk yer alır

İlkçağ'dan beri Aristoteles gibi bilginler, «doğanın boşluktan nefret ettiğini» öne sürerlerdi Bu eski fizik biliminin açıklayamadığı bazı olayları bir nedene bağlamak için yarattığı ünlü bir deyim olmuştur

İtalyan fizikçisi Torricelli (1608-1647) ancak XVII yy da atmosfer basıncı konusundaki denemeleri sırasında, barometrik boşluğu gerçekleştirerek bunun tersini kanıtlamıştır 1654 yılında, Alman Otto von Guericke bir cam fanus içindeki havayı boşaltan, hava boşaltma makinesini icat etti

Günümüzde bütün laboratuvarlarda ve sanayide bunun için geliştirilmiş araçlar (döner tulumbalar, sulu veya civalı hortumlar) kullanılır Bütün bu makineler hava veya gazı tam olarak boşaltamazlar, çünkü her birinin bir boşluk sının vardır Yıldızlar arası boşluk bile tam değildir: içinde yoğunluğu azalmış gazlar ve tanecikler bulunur

Ağırlıkları ne olursa olsun bütün cisimler boşlukta eşit hızla düşer Boşluk, sıvıların daha düşük bir sıcaklıkta kaynamasını sağlar Boşluk, soğuk ile birlikte kullanılırsa besinlerin korunmasına (konserve) yardım eder (havasız kutulara kapatma)

İçinde maddesel iletken olmadığından sesi iletmez; ısıya karşı da mükemmel bir yalıtkandır Buna karşılık, ışınları geçirir: Güneş'in sıcaklığını işte bu yüzden duyarız: Güneş ışığı gezegenler arası boşluğu ısıtmadan gelir, Dünya'yı ısıtır; gene bu boşluk sayesindedir ki, bulutsuz gecelerde, çok uzakta olmalarına rağmen yıldızların ışığını açık seçik görebiliriz


Alıntı Yaparak Cevapla

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Eski 09-11-2012   #2
Prof. Dr. Sinsi
Varsayılan

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?



Doğa Felsefesi
Vikipedi, özgür ansiklopedi İlk insan topluluklarının doğaya bakış açılarından başlarsak, onlar tam anlamıyla doğanın bir parçasıydı Acıkınca yemek ararlar, tehlikeyle karşılaşınca kaçarlar yani yaşamlarını ve ırklarını devam ettirme güdüleriyle yaşarlardı Bilgi düzeyleri yetersiz olduğundan doğaya etki edemedikleri gibi doğrudan doganın etkisi altında idiler Dolayısıyla doğanın kurallarına uyarak doğal bir hayat yaşadılar Fakat zaman içerisinde insanın doğa ile olan bütünlüğü ortadan kalkmaya başladı
Peki neden insan doğadan koptu?
Çünkü insan biyolojik evrim sonucunda kendine dışarıdan bakabileceği, duygulardan uzak, mantık kurallarına baglı bir beyine sahip oldu Bu beyin ona kendini savunmasında ve barınmasında etkinleşme şansını verdi İnsanoğlu kapasitesinin farkına vardı ve bilgi düzeyinin arttırmasıyla organik toplumlarda bir değişim süreci başladı Avcılık ile insan doğa karşısında etkili olabildiğini gördü Ayrıca şehirlerin ortaya çıkısı toplumsal yapı nın kökünden sarsılmasına neden oldu Varolan kadın-erkek eşıtliğinin erkek lehine değişmesini sağladı Evde de ekonomide de toplumsal işbölümü geleneksel eşitlikçi özelliğini kaybetti ve hiyerarşik bir şekil kazanmaya başsladı Bu durum yalnızca toplumsal alanda etkili olmakla kalmadı; aynı zamanda insan doğa ayrımının daha da belirginleğmesine neden oldu
İlk çağlarda özellikle Yunanlı filozoflar doğa üzerinde yoğun bir sekilde düşünmeye başladılar Doğayı ve insanın doğa içerisindeki yerini kavramaya çalıştılar Karmaşayı, düzensizliği ve vahşi yaban hayatını temsil eden doğaya karişı, düzenliliğe, birliğe, uyuma ve sürekliliğe sahip "polisler", ilkçağ Yunan toplumlarında insanların yaşadığı korunaklı, güvenli ve korunması gereken şehir devletleriydi Yani insan mücadele içinde oldugu doğadan ayrı ve kopuktu Feodalizmin hakim oldugu Ortaçağ'da insanıin doğayı algılayışında pek bir değişiklik olmadı Şehir devletleri imparatorluklara, sahip olduğu tebaasını ve doğayı daha sistemli ve verimli sömüren devasa devletlere dönüştü Fakat aydınlanma dönemi doğayı algılayış açısından bir dönemeçti Çünkü "mekanist görüsü" gelistirdi
Doğa felsefesi, felsefe tarihinde ilk çağ Yunan felsefesinin başlagıcında merkezi tema olarak doğanın ele alındığı felsefe yönelimidir, daha sonra çeşitli biçimlerde sürmüş, yeni nitelikler kazanmış ve yeniden değerlendirilmiştir

Doğa Felsefesinin Ana Problemi
Varolanların nedenin ne olduğunun araştırılması ve bu yönelimle doğanın düşüncenin temel meselesi olarak düşünülmeye başlanması doğa felsefesinin çerçevesini oluşturmuştur Din ve mitolojinin dışına çıkarak varolanların ve nedenlerinin araştırılmasını başlatan Thales olmuştur
Thales bu anlamda felsefenin babası sayılmakta ve onunla başlayan felsefi düşünce de doğa felsefesi ya da varlık felsefesi olarak değerlendirilmektedir Thales'i Anaximandros, Anaximenes gibi isimler izlemiştir Farklı şekillerde içerilendirmiş olmakla birlikte, doğa filozofları, genel bir yaklaşım biçimini benimsemişlerdir; bu yaklaşım biçimi de doğayı incelediklerinde karşılarına çıkan çokluk ve onun temeleinde olduğunu ve ondan kaynaklandığını düşündükleri temel kaynak (arkhe) düşüncesinden kaynaklanmıştır Doğa felsefesinin bu anlamda temel prensibi, dış dünyadaki varlıkların kendisinden doğup geldiği ilk maddenin bulunması ya da belirlenmesidir
Thales için ana mdde su 'dur; belirli bir maddedir Anaksimandros bunu sonsuz olan ile değiştirir, cünkü su nitelik ve nicelik bakımından sınırlıdır; her şeyin kedisinden çıkıp geldiği kaynak sonsuz olmalıdır ona göre Bu belirsiz ve soyut varlık ilkesini apeiron olarak belirtir Onun öğrencisi olan Anaksimenes'de, arkhe'nin birlik ve sonsuzluk niteliğine sahip olması gerektiğini öne sürer; ancak buradan itibaren hocasında ayrılarak daha çok Thales'e yakın bir düşünce geliştirir O da Thales gibi anamaddeyi belirli bir madde olarak değerlendirir; ona göre arkhe hava'dır Hava hem somut belirli bir varlıktır, hem de soyut sınırlanamaz bir varlıktır Hayatın ve ruhun temel maddesidir hava
Böylece belirli tarzda bir maddecilik anlayışı da belirginleşmeye başlar Daha sonra bu giderek soyut düşüncelere doğru evrilecektir
Pisagorcularda örneğin anamadde ya da varlığın temeli sayı oarak belirtilecektir Elea Okulu'nda Bir Olan diye adlandırılan tek ve değişmez ilke öne çıkacaktır Empedokles bu iki yöndeki gelişmeleri birleştirmeye çalışan bir ana ilke arayışında olmuştur O temel ögelerden ya da elementlerden bahseder ve ona göre bunlar hava, toprak, su ve ateş olarak belirtilirler Bu dört element evrenin yapısının unsurlarıdır Onların birleşmeleri ya da dağılmalarından diğer her şey meydana gelir Anaksagoras düzenleyici bir ilke düşüncesini de işin icine katarak oluşun temel ilkesini nous olarak belirtir

Farklı Okullar
Sokrates öncesi felsefe içinde doğa felsefesi çok önemli bir yer tutar; ilk doğa filozoflarından sonra doğa felsefesinin felsefi problemini sürdüren başka okullar da meydana gelmiştir Bunları şöyle belirtmek mümkün:
  • Milet Okulu: Thales, Anaksimandros, Anaksimenes
  • Pisagorculuk: Pisagor
  • Elea Okulu: Parmanides, Zenon
  • Efes Okulu: Heraklitos
  • Atomculuk: Demokritos
  • Çoğulculuk Okulu: Empedokles, Anaksagoras
Bu okulların tamamı birbirnden farklı ve temelde zıt görüşlerden hareket etmiş ve birbirleriyle tartışma halinde olmuşlardır Ancak temelde varlık problemi merkezi bir konu olarak hepsinde sürdürülmüştür Örneğin Milet okulu temel maddenin ne olduğuna bir cevap ararken, Pisagorcular form üzerine ağırlık vermişler; Heraklitos ve Elea okulu değişim problemi ekseninde yoğunlaşmış; Çoğulcular ve Atomcular ise çokluk ve maddesellik ekseninde temel varlık ya da varlığın temeli sorununa cevaplar vermeye girişmişlerdir Doğanın ve evrenin, bu temelde varlığın ve yaşamın temelinin açıklanması girişimi ortaya konulmuştur

Modern Doğa Felsefesi
Ortaçağ'ın sonundan itibaren Rönesans'la birlikte hem felsefe alanında yeni bir canlanma meydana gelmeye başlamış, hem de bilimler de önemli gelişmeler kaydedilmiştir Bu dönemde doğa bilimleriyle doğa felsefesini birbirinden ayırmak olanaklı görünmemektedir Kopernikus ile birlikte yeni bir dünya ve evren kavrayışı ortaya çıkmış, bunun devamında doğa felsefesi yerini giderek doğa bilimleri denilen alana bırakmaya başlamıştır Böylece doğa ve evrene ilişkin felsefi yaklaşımların, soyut arkhe arayışının yerini somut bilgiler, gözlem ve deney merkezli aıklamalar almaya yönelir Bu süreçte özellikle ortaçağdaki doğa felsefesi anlayışıyla bir hesaplaşmaya girildiği ve doğa bilimlerinin bu hesaplaşmanın sonucunda geliştiği söylenebilir Her alanda olduğu gibi bilimin gelişmesi, özelliklede bu gelişmenin felsefenin içinden gelerek meydana gelmesi, felsefe ile bilim arasındaki ayrımın nasıl konulacağı sorununu gündeme getirmiş, doğa felsefesi ile doğa bilimleri arasındaki ayrım konusunda bu özellikle belirgin bir sorun olarak ortaya çıkmıştır Francis Bacon, Kepler, Laplace gibi bilgin düşünürler bu sürecin önemli isimleri olmuşlardır Doğa felsefesi bu sürecte bir tür felsefi materyalizm biçimine de bürünmüştür

Doğa Felsefesi ve Doğa Bilimi
Doğa felsefesi ve doğa bilimi 17 yüzyıla gelinceye kadar birbirinden ayrılan alanlar değildir; hatta bu alanlar arasında açık ayrımlar yapma konusunda süregiden sorunlar sözkonusudur Çoğu zaman ve çoğu yerde doğa felsefecisi aynı zamanda fizik ya da diğer doğal bilim alanlarıyla da ilgilenen hatta onlar üzerinde otoriteye sahip olan bir kişiydi 17 yüzyıldan itibaren felsefe ve bilim alanları birbirinden ayrışmaya ve bilimler kendi alanlarında daha da özerkleşmeye başlamasıyla doğa felsefesiyle doğa bilimlerinin ayrışması sorunu da gündeme geldi Bu bir anlamda iki farklı bilgi türü arasında yapılması beklenen bir ayrımdı; ancak yine de bu ayrım her zaman açık seçik değildir Modern doğa biliminin aldığı biçim ve geldiği bilgi düzeyi, belirli bir tarihsel dönemde bu ayrımı koşullandırmıştır Özellikle Galileo ve Newton ile bu gelişmenin ortaya çıktığı saptanabilir; belirli bir yöntemle bir anlamda bilim empirikleşiyor, gözlem ve deney önemli bir nitelikle öne çıkıyordu Felsefe ise spekülatif bir görünüme bürünüyordu bu gelişmeler karşısında Bu eksende giderek bir ayrışma meydana gelmiş olsa da felsefe düzeyinde doğa bilimi ile doğa felsefesini ayrıştırmanın açık ve kesin bir şekilde görünebildiğini söylemek zordur

Alıntı Yaparak Cevapla

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Eski 09-11-2012   #3
Prof. Dr. Sinsi
Varsayılan

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?



Atmosfer

Yerküreyi saran hava tabakası Yunanca "atnos": buhar ve "sphaira": küre sözcüklerinden

Atmosfer Yüksekliğe Göre Değişir

Hayvanlar ve bitkiler ancak atmosfer içinde yaşayabilir, çünkü atmosfer onları dış tehlikelerden (göktaşları, morötesi ve kozmik ışınlar) korur, onlara hem ısı, hem de yaşamaları için mutlaka gerekli olan oksijen gibi maddeleri sağlar Bunun için astronotlar, sürekli olarak, yapay bir atmosferin yaratıldığı bir kabinde veya uzay elbisesi içinde yaşayabilirler

Yerden yukarıya yükseldikçe, atmosferin tekdüze olmadığını anlarız: basıncı, yoğunluğu, sıcaklığı ve bileşimi, yükseldikçe değişikliğe uğrar Yükseklik sıfırken, yani deniz düzeyinde, Dünya'yı saran tüm hava kalınlığının yükünü taşırız Atmosfer basıncı denilen bu yük oldukça önemlidir: santimetrekareye l kg'dan fazla düşer (l 033 gr) Biz yükseldikçe bu basınç azalır Bu olayı dağcılar çok yüksek tepelere, örneğin Himalayalar'a (8 000 metre) tırmandıkları zaman daha iyi anlarlar Astronotlara gelince, uzay giysilerinden çıkacak olsalar, Dünya'da olduğu gibi vücutları her yandan basınç altında bulunmayacağı için düpedüz patlarlar

500 Kilometre Yükseklikte Atmosfer

Sıcaklık da aynı şekilde değişir; önce azalır, sonra yavaş yavaş artarak çok yükseklerde birkaç yüz dereceye ulaşır Atmosfer, sıcaklık derecesinin düşey doğrultuda değişmesi göz önünde tutularak, şu tabakalara ayrılmıştır: troposfer (yükseldikçe ısı, belli bir oranda eksilir), stratosfer (ısı değişmez denilebilecek bir durumdadır), mezosfer (ısı önce artar, sonra eksilir), termosfer (yükseldikçe ısı artar)

Vazgeçilmez Bir Korunma

Güneş, bizi aydınlatan ışık ışınlarından başka morötesi ışınlar da yayar; ama morötesi ışınlar yaşam için o kadar tehlikelidir ki, eğer bunlar yere kadar ulaşabilseydi yeryüzünde yaşama olanağı bulunmazdı Neyse ki, 25 kilometre kadar yukarıda, bu ışınları geniş ölçüde durduran bir ozon tabakası vardır Ama bunların bir kısmı gene de atmosferden sızarak yere ulaşır Tedbir almadan uzun süre güneş banyosu yapan dikkatsizlerin vay haline!

Tüm meteoroloji olayları atmosferde olup biten hareketlerden doğar Bu hareketlerin yarattığı yağmur yeryüzünde yaşamın sürüp gitmesini sağlar

Boşluk

Göründüğünün tam tersine, evren çok az sayıdaki maddi cisimlere göre çok daha büyük oranda bir boşluktan oluşmuştur: nitekim gökcisimleri, yıldızlar arası boşluk'ta tek tek kalmışlardır Maddenin en küçük düzeyinde, yani atomda da elektronlarla çekirdek arasında oldukça büyük bir boşluk yer alır

İlkçağ'dan beri Aristoteles gibi bilginler, «doğanın boşluktan nefret ettiğini» öne sürerlerdi Bu eski fizik biliminin açıklayamadığı bazı olayları bir nedene bağlamak için yarattığı ünlü bir deyim olmuştur

İtalyan fizikçisi Torricelli (1608-1647) ancak XVII yy da atmosfer basıncı konusundaki denemeleri sırasında, barometrik boşluğu gerçekleştirerek bunun tersini kanıtlamıştır 1654 yılında, Alman Otto von Guericke bir cam fanus içindeki havayı boşaltan, hava boşaltma makinesini icat etti

Günümüzde bütün laboratuvarlarda ve sanayide bunun için geliştirilmiş araçlar (döner tulumbalar, sulu veya civalı hortumlar) kullanılır Bütün bu makineler hava veya gazı tam olarak boşaltamazlar, çünkü her birinin bir boşluk sının vardır Yıldızlar arası boşluk bile tam değildir: içinde yoğunluğu azalmış gazlar ve tanecikler bulunur

Ağırlıkları ne olursa olsun bütün cisimler boşlukta eşit hızla düşer Boşluk, sıvıların daha düşük bir sıcaklıkta kaynamasını sağlar Boşluk, soğuk ile birlikte kullanılırsa besinlerin korunmasına (konserve) yardım eder (havasız kutulara kapatma)

İçinde maddesel iletken olmadığından sesi iletmez; ısıya karşı da mükemmel bir yalıtkandır Buna karşılık, ışınları geçirir: Güneş'in sıcaklığını işte bu yüzden duyarız: Güneş ışığı gezegenler arası boşluğu ısıtmadan gelir, Dünya'yı ısıtır; gene bu boşluk sayesindedir ki, bulutsuz gecelerde, çok uzakta olmalarına rağmen yıldızların ışığını açık seçik görebiliriz

Enlem ve Boylam

Dünya üzerinde bir yeri veya bir noktayı saptamağa yarayan dereceli ölçüler

Dünya, iki ucundan, yani kutuplardan hafifçe basık bir küre biçimin*dedir Bu küre üzerindeki herhangi bir yerin konumunu belirlemek için, kürenin paralel ve meridyen denilen çemberlerle hayalî olarak bölünmesi düşünüldü: bu çemberlerin kesişme noktaları yer tayininde büyük rol oynar

PARALELLER VE ENLEM

Ekvator Dünya'yı, Güney Yarımküre ve Kuzey Yarımküre olmak üzere iki eşit bölüme ayıran hayalî bir dairedir Paraleller, ekvator düzlemine «paralel» dairelerdir Paralel dairelerin birbirine uzaklığı 111 kilometre*dir, uzunlukları ise, Dünya küre biçiminde olduğundan eşit değildir Bu paralellerin en büyüğü olan ekvatorun uzunluğu 40076 kilometredir, kutuplarda ise paraleller sıfıra indirgenmiş birer noktadır Kuzeye doğru 90, güneye doğru 90 paralel vardır Bunlar ekvatorda sıfır ve kutuplarda 90 derece olmak üzere enlemi ölçmeğe yarar Örneğin 42 derece kuzey enleminde bulunan Sinop ekvator ile Kuzey Kutbu arasında aşağı yukarı yarı yoldadır

MERİDYENLER VE BOYLAM

Kutuplardan geçen daireler ise me*ridyenleri meydana getirir Bunların uzunluğu değişmez ve ekvator çevresiyle hemen hemen eşittir Aralarındaki uzaklık ekvatorda ve kutuplar yakınında farklıdır

Meridyenler, boylamı ölçmeğe yarar Bunun için, İngiltere'de, ünlü gözlemevinin bulunduğu Greenwich'ten geçen meridyen başlangıç alınmıştır Greenwich meridyeni üzerin*de boylam sıfır derecedir Öteki meridyenlere de batıya doğru 0'dan 180'e ve doğuya doğru da gene 0'dan 180'e kadar numara verilmiştir

BİR NOKTAYI İŞARETLEMEK

Okyanusun ortasında bulunan bir gemici hangi noktada bulunduğunu anlamak için bir yer belirlemesi yapar Bir sekstant yardımıyla, öğleyin, Güneş'in ufuk üzerindeki yüksekliğini ölçmekle bulunduğu enlemi saptayabilir Boylamı bulmak içinse gene öğleyin, esas olarak meridyen saatine göre ayarlanmış bir kronometreye bakar Bir saatlik fark 15 derece anlamına gelir Sözgelimi eğer hesap*lar 40 derece kuzey enlemi ve 20 derece doğu boylamı gösteriyorsa, gemici Atlas Okyanusu'nda Portekiz açıklarında, kıyıdan 900 kilometre kadar uzakta bulunduğunu öğrenmiş olur

Bugün bu çok eski teknik, yerini gittikçe daha yaygın olarak radyoelektrik ölçü yöntemlerine bırakmaktadır

Depremler ve Astronomi

Anadolu bilginlerinden Thales, astronomi hesaplarına dayanan Güneş tutulmalarını hesaplayan ve bunların depremlerle olan bağlantısını bulan ilk kişi sanılmaktadır Aristo'nun adı da Mezopotamya'da bulunan yeğeninden buradaki rasathanelerde saptanan Güneş ve Ay tutulmalarının kayıtlarını istemesi şeklinde geçmektedir

Bu konuda Thales'in tutulma olayına bağladığı kehanetlerinin önemli bir rol oynadığı düşünülebilir Thales, tutulan kayıtları ve yaşadığı zamanın astronomi olaylarını incelemiş ve Anadolu'da meydana gelecek büyük bir depremi önceden haber vermiştir

Hesaplara göre bir tam Ay tutulmasının ardından 235 ay sonra bir tam Güneş tutulması meydana gelmektedir Aynı bölge üzerinde tam Güneş tutulmasının tekrar meydana gelmesi için yaklaşık 54 sene geçmesi gerekmektedir Bu nedenle her üçüncü tutulma, yani aralarında 54 yıllık bir zaman süresi bulunan iki Güneş tutulması genellikle az farklı enlem ve boylamlara rastlayacaktır

Kuzey yarım kürede başlayan bir tutulma devresi, Güney yarımkürede kısmi tutulmalar ile sona erer Tutulmanın etkili olduğu bölgelerde büyük çekim gücünün oluşması ve yer katmanlarının zayıf olan yerlerinde depremlerin oluşması kaçınılmazdır

Önemli zarar oluşturacak bir depremin meydana çıkması için Ay'ın gerçek bir tetikleme yapması gerekir Bunun için Ay, öncelikle Zodyak'ın enerji yoğunlaşma noktaları veya "Kozmik Güç Noktaları" adı verilen sabit burçlardan birinde olması gerekir Sabit burçlar Boğa, Aslan, Akrep ve Kova'dır

Tetikleme burçlarından geçen Ay'ın, diğer burçlardaki gezegenler ile "Görünüm Rotasyonu" adı verilen 30 derecelik yolculukta yapacağı açılar çok önemlidir Eğer tüm gezegenler ile sert açılar yapıyorsa ortaya büyük tahribat yapacak bir deprem çıkacaktır Örneğin, sabit burçlardan Boğa'ya giren Ay, 30 derece süren kuşaktaki rotasyonunda bazı gezegenler ile olumlu açılar, bazıları ile sert açılar yaparsa tetikleme görevi gerçekleşemez

Ay'ın Oluşumu

Dünya'nın uydusu Ay'ın, Dünya ile Mars büyüklüğündeki bir asteroidin çarpışması sonucu oluştuğu ileri sürüldü Colorado'daki Southwest Araştırma Enstitüsü'nden araştırmacı Robin Canup, ''ilerlemiş bilgisayar teknolojisinden faydanılarak yapılan yeni canlandırmaların ve yeniden gözden geçirilen önceki canlandırmaların, Dünya'ya çarpan Mars kütlesindeki bir nesnenin, her ikisini şimdiki konumuna sokmak için yeterli olduğunu gösterdiğini''söyledi

Bilim adamları ayrıca, aralarında Dünya'daki yerçekiminin Ay'ı yakaladığı ya da Dünya ve Ay'ın eş zamanda oluştuğunun bulunduğu diğer teorileri geçersiz sayıyorlar

Öte yandan, Mars büyüklüğündeki asteroid teorisini ilk ortaya atan Harvardlı araştırmacı Al Cameron, Canup'un canlandırmasının tam oluşumu değil, ilk çarpışmayı kapsadığını ve çarpışmadan çıkan materyali taş yığını değil sert bir kaya varsaydığını bildirdi Cameron, Ay'ı oluşturacak çarpışma zamanında Dünya'nın, Canup'un bildiği gibi tamamen değil, yalnızca 3/2'sinin oluştuğunu kaydetti

Barisfer

Dünya'nın derinliklerinde, ağır madenlerden meydana gelmiş bir tabakadır Buna "ağırküre" de denir Üstünde litosfer (yerkabuğu) vardır Altında ise Dünya'nın çekirdeği bulunur Barisferi meydana getiren madenler, demirle nikel karışımıdır Bu tabakanın her santimetrekaresi, binlerce tonluk basınç altındadır Sıcaklığı da binlerce derecedir

Alıntı Yaparak Cevapla

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Eski 09-11-2012   #4
Prof. Dr. Sinsi
Varsayılan

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?



En Yakın Yıldızlar

Güneş sıradan bir yıldızdır Kütle ve ışıma gücü bakımından ortalamanın biraz üzerinde olmakla birlikte parlak, büyük kütleli yıldızların yanında biraz soluk benizli kalır Bazı yıldızların kütlesi Güneş'in kütlesinin birkaç katı, bazılarınınki ise 100 katı olabilir ama yakınımızdaki yıldızların tipik kütlesi Güneş'in kütlesinin üçte biri civarındadır Yıldızlar kimi zaman çiftler halinde bulunur Bu durumda yıldızların yörünge hareketlerini birbirlerine uyguladıkları karşılıklı kütle çekim kuvvetleri belirler Bu karşılıklı dans astronomlara çift yıldızların kütlelerini doğrudan ölçme olanağı sağlar

Tek başına bulunan yıldızların kütleleri, ışıma güçleri ve renkleri gözlenerek, dolaylı bir yoldan ölçülür Bir yıldızın ışıma gücü kütlesine çok duyarlı bir biçimde bağlıdır: kütle ikiye katlandığında ışıma gücü 10 kat artar Yıldızın ışıma gücü arttıkça sıcaklığı da artar Yıldız hemen hemen mükemmel bir fırına ya da kara cisme benzer Kara cismin sıcaklığı arttıkça yaydığı karakteristik ışınımın dalgaboyu kısalır, sıcaklık azaldıkça dalgaboyu uzar Bu nedenle sıcak kara cisimler mavi, soğuk kara cisimler ise kırmızı renklidir Genelde, yaydığı ışınımın dalgaboyu kara cismin sıcaklığının bir ölçüsüdür Astronomlar bir yıldızın sıcaklığını renginden, ya da başka bir deyişle ışığının tayfını elde ederek ölçerler Yıldızlar bir dereceye kadar ideal ışınım yayıcılar olduklarından, yıldızın büyüklüğünü rengine ve ışıma gücüne bakarak anlayabiliriz: ışıma gücü yüksek, sıcak ve mavi olanlar dev; sönük, serin ve kırmızı olanlar cücedir

Yakın yıldızlar arasında her renkten ve parlaklık sınıfından örnekler vardır Yıldızlar hakkında bildiklerimizin çoğunu bu yakın yıldızları inceleyerek elde ederiz Yakın yıldızlar göreceli olarak parlak olduklarından astronomlar bunların kimyasal yapıları ve hatta kimi zaman büyüklükleri ve kütleleri konusunda ayrıntılı bilgiler elde edebilirler Yakın yıldızlar derken Güneşimize ek olarak birkaç yüz başka yıldızdan söz ediyoruz Bu yıldızlardan bazıları boyut olarak Güneş'ten birkaç bin kat büyük kırmızı dev yıldızlar, diğerleri gene boyut olarak Güneş'ten birkaç bin kat küçük beyaz cücelerdir Tüm bu yıldızların kütleleri Güneş'in kütlesine yakındır Bu yıldızların çoğunluğu ise ne dev ne de cücedir Büyük ölçüde şişmiş ya da büzülmüş yıldızlar Güneş'le karşılaştırıldığında büyük bir olasılıkla evrimlerinin ileri aşamalarında olan yıldızlardır

Buradan bir model çıkıyor: yıldızların yüzey sıcaklığına karşı ışıma güçlerinin çizildiği diyagramda yıldızların çoğunluğu ana kol adı verilen düz bir çizgi üzerinde yer alırlar Bu diyagram astronomlar için öylesine önemli ve vazgeçilmezdir ki özel bir adı bile vardır: Ejnar Hertzsprung ve Henry Norris RusselFin adlarına izafeten bu diyagrama Hertzsprung-Russell diyagramı adı verilir Ana kol üzerinde yıldızların ışıma güçleri arttıkça sıcaklıkları da artar

Ana kolu farklı kütlelerde oldukları halde tümü de hidrojen yakan yıldızların geometrik yeri olarak yorumlayabiliriz Hidrojen tükeninceye kadar çok uzun zaman geçer Bu süre örneğin Güneş için 10 milyar yıldır Bu nedenle hidrojen yakan ana kolda yıldızların yeri tüm hidrojen tükeninceye kadar çok az değişir Güneş sarı renkli bir ana kol yıldızıdır Çok değil, eğer bizden yalnızca 10 parsek uzakta olsaydı, çıplak gözle zar zor görülebilen bir ışık noktası halinde olurdu

Buna ek olarak ana koldan uzakta yer alan yıldızlar da vardır Bu yıldızların ışıma güçleri uç değerler alır, çok küçük ya da çok büyük Yıldızlar da buna göre cüce veya dev olarak sınıflandırılırlar Kırmızı devler ve mavi devler, kırmızı cüceler ve beyaz cüceler vardır Güneş gibi bir yıldız helyum yakarken dev olmaya mahkûmdur Yalnızca yüz milyon yıl veya biraz daha fazla zaman alan bu evre göreceli olarak kısa ömürlü olduğundan, kırmızı devler ana kol yıldızlarına oranla daha ender rastlanan yıldızlardır Beyaz cüce, tüm yakıtını bitiren Güneş türü bir yıldızın geçireceği son evredir

Evrenin Genleşmesi

1920'lerde, Edwin Hubble, Wilson Dağı Gözlemevi'ndeki 100" lik yeni inşa edilmiş teleskopu kullanarak, birkaç nebuladaki (bulutsu) değişen yıldızları, doğası astronomi çevrelerinde hararetli bir tartışma konusu olan, dağınık cisimleri ortaya çıkarmıştır O'nun Sefeid Değişkenleri olarak adlandırılan bir yıldızlar sınıfına benzeyen karakteristik bir kalıba sahip bu değişen yıldızlar için keşfi devrimyaratmıştır

Daha önceden, Harvard Koleji Gözlemevi'nde çalışan bir kadın astronomlar grubunun üyesi, Henrietta Levitt, bir Sefeid Değişken Yıldız'ın bu periyotları ve bunun parlaklığı arasında yoğun bir korelasyon olduğunu göstermişti Bu yüzden, Hubble, bu yıldızların ve akılarının periyodunu ölçerek, bu nebulaların kendi galaksimiz içindeki bulutlar olmadığını, fakat kendi galaksimizin kıyısının çok ötesinde dış galaksiler olduklarını gösterebilmişti

Hubble'ın ikinci devrimsel keşfi, O'nun Sefeid'e dayalı galaksi mesafe belirlemeleri ve bu galaksilerin göreli hızlarının ölçümleri planıdır Daha uzak galaksilerin bizden daha hızlı bir şekilde uzaklaştıklarını göstermiştir: Evren statik değildir, ancak genleşmektedir Bu keşif, modern kozmoloji çağının başlangıcını belirlemiştir

Bugün, Sefeid Değişkenleri, galaksilere olan uzaklıkları ölçmek için en iyi metot olarak kalmıştır ve bunlar genleşme oranı ve Evren'in yaşını belirlemede çok önemlidir

Sefeid Değişkenleri Nedir?

Güneş ve Sefeid Değişen Yıldızlar dahil, bütün yıldızların yapısı yıldızdaki maddenin donukluğu (opaklığı) ile belirlenir Eğer madde çok donuksa, o zaman fotonların yıldızın sıcak merkezinden dışa dağılması uzun sürecektir ve güçlü sıcaklık ve basınç eğimleri yıldızın içinde gelişebilir

Eğer madde neredeyse saydam ise, o zaman fotonlar yıldızın içinde kolaylıkla hareket ederler ve herhangi bir sıcaklık eğrisini silerler Sefeid Yıldızlar, iki hal arasında salınırlar: Yıldız, yoğun haldeyken, atmosferindeki bir tabakadaki helyum tek başınaiyonlaşır Fotonlar, tek başına iyonlaşmış helyum atomlarındaki bağlı elektrondan dışa saçılırlar, bu yüzden, tabaka çok donuktur ve tabaka boyunca büyük sıcaklık ve basınç eğimleri oluşur

Bu büyük basınçlar, tabakanın (ve tüm yıldızın) genleşmesine sebepolur Yıldız, genleşmiş haldeyken, tabakadaki helyum iki kat iyonlaşır, böylece tabaka ışınıma daha geçirgen olur ve tabaka boyunca daha zayıf basınç eğimleri olur Yıldızı çekim gücüne karşı destekleyecek basınç eğimi olmaksızın, tabaka ve (tüm yıldız) büzülür ve yıldız sıkıştırılmış haline geri döner

Sefeid Değişken Yıldızlar, beş ila yirmi Güneş kütlesi arasında kütlelere sahiptirler Daha kütleli yıldızlar, daha parlaktırlar ve daha genişlemiş kaplamalara sahiptirler Kaplamaları daha genişlemiş olduğundan ve kaplamlarındaki yoğunluk daha düşük olduğundan, tabakadaki yoğunluğun ters kare köküne orantılı olan değişebilirlik periyotları daha uzundur

Sefeidleri Kullanmadaki Zorluklar

Sefeidleri mesafe belirteçleri olarak kullanmakla birlikte, çok sayıda zorluk da olmaktadır Yakın geçmişe kadar, astronomlar, yıldızlardan gelen akıları ölçmek için fotoğraf klişeleri kullanmışlardır Klişeler, yüksek derecede doğrusal değildi ve sıklıkla hatalı akış ölçümleri ortaya çıkıyordu

Kütleli yıldızlar, daha kısa ömürlü olduklarından, daima kendi tozlu doğum yerlerinin yakınında konumlanmış olurlar Özellikle çoğu fotoğraf görüntüsünün çekildiği mavi dalga boylarındaki toz ışığı emer ve eğer uygun bir şekilde düzeltilemezse, bu toz emilmesi hatalı parlaklık belirlemelerine yol açabilir

Sonuç olarak, uzak galaksilerdeki Sefeidleri, yerden tespit etmek çok zor olmaktadır: Yerküre'nin dalgalanan atmosferi, bu yıldızları ana galaksilerinin yayılan ışığından ayırmayı imkansız hale getirmektedir

Sefeidleri, mesafe belirteçleri olarak kullanmaktaki bir diğer tarihi zorluk, yakınındaki bir Sefeid modeline olan mesafeyi belirleme problemi olmuştur Son yıllarda, astronomlar kendi Samanyolu Galaksimizin uydu galaksilerinden ikisi olan Büyük Magellan Bulutu (LMC) ve Küçük Magellan Bulutu'na (SMC) mesafeleri belirlemede, birkaç çok güvenilir ve bağımsız metot geliştirmişlerdir LMC ve SMC büyük sayıda Sefeid içerdiğinden dolayı, bunlar mesafe ölçeğini ayarlamak için kullanılabilir

Son Gelişmeler

Son teknolojik ilerlemeler, astronomların çok sayıdaki diğer eski zorluğun üstesinden gelmesini sağlamıştır CCD'ler (şarj bağlı cihazlar) olarak adlandırılan yeni detektörler, doğru akı ölçümlerini mümkün kılmıştır Bu yeni detektörler, aynı zamanda, kızılötesi dalga boylarında da hassastır Toz, bu dalga boylarında çok daha fazla saydamdır Çoklu dalga boylarındaki akıları ölçerek, astronomlar, toz etkilerini düzeltebilmiş ve çok daha doğru mesafe belirlemeleri yapabilmişlerdir

Bu ilerlemeler, "Lokal Grup"tan oluşan yakın galaksiler üzerine doğru bir çalışmayı sağlamıştır Astronomlar, Sefeidleri hem metal zengini M31 iç bölgesinde (Andromeda) hem de metali zayıf dış bölgede gözlemlemişlerdir Bu çalışma, Sefeidlerin özelliklerinin hassas olarak kimyasal miktarlara bağlı olmadığını göstermiştir

Bu ilerlemelere rağmen, astronomlar, Yerküre'nin atmosferi ile sınırlı olarak, sadece en yakın galaksilerin mesafelerini ölçebilmişlerdir Evren'in genleşmesine bağlı olarak harekete ilaveten, galaksiler komşuların kütle çekimine bağlı olarak "izafi hareketlere" sahiptirler Bu olağandışı hareketlerden dolayı, astronomların, Hubble Sabiti'ni belirleyebilmek için uzak galaksilere mesafeleri ölçmeleri gerekmektedir

Evren'in daha derinlerine inmeye çalışırken, astronomlar, galaksilere izafi mesafeleri belirlemek için bir dizi yeni teknik geliştirmiştir: bu bağımsız izafi mesafe ölçekleri şu anda 10'dan daha iyisinde anlaşmışlardır Örneğin, spiral galaksinin dönme hızı ve parlaklığı arasında Tully-Fisher Bağıntısı olarak adlandırılan, çok sıkı bir ilişki vardır

Astronomlar aynı zamanda, bir beyaz cücenin patlayıcı yanmasına bağlı olduğu düşünülen, hepsi hemen hemen aynı tepe parlaklığına sahip, Tip Ia Süpernovası'nı bulmuşlardır Bununla beraber, büyük sayılardaki prototip galaksilere mesafelerin doğru ölçümleri olmaksızın, astronomlar, bu izafi mesafe ölçümlerini ayarlayamazlardı Bu yüzden, Hubble Sabiti'nin doğru belirlemelerini yapamamışlardır

Geçen birkaç on yıl içinde, önde gelen astronomlar, farklı veri setlerini kullanarak, Hubble Sabiti için 50 km/sn/Mpc ila 100 km/sn/Mpc arasında değişen değerler rapor etmişlerdir 1 faktör 2 belirsizliğe karşılık gelen bu farklılığı çözmek, gözleme dayalı Evren Bilim'deki göze çarpan en önemli problemlerden biridir

Evren Sonsuz mudur?

"Bazıları Dünya'nın ateş içinde sona ereceğini söylüyorlar, diğerleri de buz içinde" Aynen Robert Frost'un, şiirinde, Yerküre için iki olası kader hayal ettiği gibi, Evren bilimciler de, Evren için iki olası son öngörmektedirler:

Sonsuz Genleşme
Büyük Sıkıştırma
Evren'in oluşumu genleşme devinirliği ve kütle çekim gücü arasında bir savaşımla belirlenmiştir Kütle çekimin kuvveti, Evren'in yoğunluğuna bağlı iken, genleşme oranı Hubble Sabiti, H0, ile belirlenir Eğer Evren'in yoğunluğu, Hubble sabitinin karesi ile orantılı olan "kritik yoğunluk"tan daha az ise, o zaman Evren, sonsuza dek genleşecektir Eğer Evren'in yoğunluğu, "kritik yoğunluk"tan daha büyük ise, o zaman çekim gücü sonunda kazanacak ve Evren, kendisi üzerine çökecektir

Evren'in Geometrisi

Evren'in yoğunluğu aynı zamanda onun geometrisini de belirler Eğer Evren'in yoğunluğu kritik yoğunluğu aşarsa, o zaman Uzay'ın geometrisi kapanır ve bir kürenin yüzeyi gibi pozitif olarak eğilir Bu da foton yollarının yavaş yavaş uzaklaştığı ve sonunda bir noktaya geri döndüğü anlamına gelir Eğer Evren'in yoğunluğu kritik yoğunluktan daha az ise, o zaman Uzay'ın geometrisi açıktır ve bir eyerin yüzeyi gibi negatif olarak eğilir

Eğer Evren'in yoğunluğu tam olarak kritik yoğunluğa eşit olursa, o zaman Evren'in geometrisi bir kağıt parçası gibi düz olur Bu yüzden, Evren'in geometrisi ve kaderi arasında doğrudan bir bağ vardır

Büyük Patlama Kuramı'nın bir uzantısı olan Şişirilme Teorisi'nin en basit versiyonu, Evren'in yoğunluğunun kritik yoğunluğa çok yakın olduğunu ve Evren'in geometrisinin bir kağıt parçası gibi düz olduğunu tahmin etmektedir

MAP'tan Gelen Ölçümler

MAP Uydusu, Evren'in geometrisi dahil olmak üzere Büyük Patlama Kuramı'nın temel parametrelerini ölçmeyi amaçlamaktadır Eğer Evren açık ise, o zaman kozmik mikrodalga fon dalgalanmaları, yarım dereceli ölçek üzerinde en büyük olur Eğer Evren düz ise, dalgalanmalar dereceli ölçek üzerinde en büyük olur

Eğer Evren kapalı olursa, dalgalanmalar daha büyük ölçekte bile en büyük olur Bu yüzden, MAP'in dalgalanma ölçeği ölçümü Evren'in yoğunluğunu araştırmaktadır ve Evren bilimcilere, Evren'in nihai sonunun iç yüzünü gösterecektir

Güneş Sistemi

İçinde yaşadığımız Evren'i tanıma çabamız, binlerce yıldan bu yana sürüyor Günümüzde, en modern teleskoplar sayesinde, Evren'in en uzak köşelerini, milyarlarca ışık yılı ötedeki gökadaları görebiliyoruz Oysa, Evren'de küçücük bir nokta gibi kalan, içinde yaşadığımız Güneş Sistemi'miz hâlâ gizemlerle dolu

Uzay Çağı'nın başlangıcından bu yana yapılan çalışmaların büyük bölümü, Güneş Sistemi'ni keşfetmek içindi Bugün, gerek bu çalışmalara gerekse çevremizdeki başka olası gezegen sistemlerine bakarak Güneş Sistemi'mizin oluşum öyküsünü anlatabiliyoruz

Güneş Sistemi'nin bir bulutsudan oluştuğu düşüncesini, aynı zamanda bir fizikçi de olan Prusyalı filozof, Immanuel Kant ortaya attı Kant, ilkel Evren'in ince bir gazla dolu olduğunu canlandırdı düşüncesinde Başlangıçta homojen dağılmış bu gazda, doğal olarak zamanla bir takım kararsızlıklar ortaya çıkmalıydı Bu kütleçekimsel kararsızlıklar, kütlelerin birbirini çekmesine, dolayısıyla da gazın belli bölgelerde topaklaşmaya başlamasına yol açacaktı Peki, bu topaklar neden disk biçimini alıyordu?

Kant, bunu da çözdü Başlangıçta çok yavaş dönmekte olan gaz topakları, sıkıştıkça hızlanıyordu Bu, çok temel bir fizik ilkesine, "Momentumun Korunumu İlkesi" ne dayanır Bu ilke, genellikle bir buz patencisi örneğiyle açıklanır: Kolları açık, kendi çevresinde dönen buz patencisi, kollarını kapadığında hızlanır

Benzer olarak, kütleçekiminin etkisiyle sıkışmaya başlayan gazlar da giderek hızlanır Dönmenin etkisi gaz topağının incelerek bir disk biçimini almasını sağlar İşte, bu disklerden birisi Güneş Sistemi'mizi oluşturmuştur

Kant'ın bu düşüncesi, daha sonra birçok gökbilimci tarafından kabul gördü; ancak, herhangi bir yıldızın çevresinde böyle bir oluşum gözlenemediği için, 1980'lere değin bu düşünce, bir varsayım olarak kaldı, kanıtlanamadı Sonra, gökbilimciler, T Boğa türü yıldızların, yaklaşık üçte birinin, normalin çok üzerinde kızılötesi ışınım yaydığını keşfettiler

Yıldızın etrafındaki toz bulutu, yıldızın yaydığı kısa dalgaboylu ışınımı soğuruyor; sonra daha uzun dalga boyunda, yani kızılötesi ve radyo dalga boylarında ışınım yayıyordu

Birkaç yıl sonra, gökbilimciler bazı yıldız oluşum bölgelerine radyo teleskoplarla baktıklarında yıldızların etrafındaki karanlık, toz içeren diskleri doğrudan görebildiler Hubble Uzay Teleskopu'nun keskin gözleriyle yapılan gözlemlerde, 1600 ışık yılı uzaklıktaki Orion Bulutsusu'ndaki yıldız oluşum bölgeleri incelendi Böylece, genç yıldızların etrafındaki gaz ve toz diskleri ilk kez görünür dalgaboyunda görüntülenmiş oldu

Güneş Bulutsusu

Güneş Sistemi'ni oluşturan madde, çok büyük oranda, 12-16 milyar yıl önce gerçekleşen Büyük Patlama'nın ürünü olan hidrojen ve helyumdan meydana gelmişti Bugün, Evren'e baktığımızda, bazı elementlerin çok, bazılarınınsa pek az miktarlarda bulunduğunu görüyoruz En yaygın element hidrojen, tüm gökadaların ve yıldızların dörtte üçünü oluşturuyor İkinci baskın element olan helyumla birlikte hidrojen, Evren'deki maddenin %98'ini oluşturuyor Öteki tüm elementlerse sadece %2 oranında bulunuyorlar

Bugün, Güneş Sistemi'ni oluşturan bulutsudan geriye pek birşey kalmadı Bu maddenin bir bölümü gezegenleri, asteroidleri ya da kuyrukluyıldızları oluşturdu Kalanını, ya Güneş yuttu ya da Güneş ışınlarının yarattığı basınçla yıldızlararası ortama itildi Ancak, bulutsudan kalan maddenin korunduğu çok iyi yerler var: Kuyrukluyıldızlar

Bu gökcisimleri, küçük olmaları ve çoğu zaman Güneş'ten çok uzakta yeralmaları sayesinde, oluştukları andaki maddeyi bozulmamış halde saklıyorlar Henüz, bir kuyrukluyıldızı doğrudan inceleme fırsatı olamadı; ancak, onlardan kopup gelen bazı parçalar laboratuvarlarda incelenebiliyor

Gezegenleri, göktaşlarını ve kuyrukluyıldızları oluşturan diskten artakalan parçacıkların bir bölümü, atmosferin üst katmanlarından özel uçaklarla toplanabiliyor Bir elektron mikroskobuyla incelendiklerinde, bu parçacıkların bazı minerallerden ve organik bileşiklerden oluştukları görülüyor Kozmik toz parçalarının çoğu hemen hemen aynı büyüklükte, 0,1 mikron çapındadır Bu toz parçaları, 4,5 milyar yıl önce, Güneş Sistemi'ni oluşturan bulutsudan arta kalmıştır

Gezegenler oluşmadan önce, Güneş'i çevreleyen disk, merkeze, yani Güneş'e yakın yerlerde çok sıcak; kenarlardaysa çok soğuktu Çünkü, Güneş'in güçlü ışınımı, bulutsunun ona yakın katmanlarının çok ısınmasına yol açıyordu Bunun yanı sıra, Güneş'in kütleçekimi sayesinde, diskin merkezine yakın katmanları, daha yoğun ve kalındı

Bu bölgelerdeki sıcaklık, gezegenlerin oluşumu sırasında, suyun buz halinde katılaşmasını engelliyordu Burada yoğunlaşan maddenin çoğu, silikatlardan ve öteki ağır minerallerden oluşuyordu İşte bu mineraller, karasal gezegenleri oluşturdular

Sıcaklık, diskin kenarlarına doğru ilerledikçe düşüyordu Burada, su katı halde bulunabiliyordu Su ve gaz moleküllerini içeren "kar taneleri" de dev gezegenleri oluşturdu En dışta yeralan en soğuk bölgede yoğunlaşan madde, tamamıyla katı haldeydi ve çok dağınık halde bulunduğundan bir gezegeni oluşturabilecek topaklanmayı sağlayamadı Bunun yerine, çok sayıda, gezegenlere oranla küçük gezegenimsi göktaşları oluştu

Bu göktaşları, yani kuyrukluyıldız çekirdeklerinin bulunduğu bölgeye Kuiper Kuşağı deniyor Güneş'i çevreleyen diskin topaklaşarak gezegenleri, göktaşlarını ve kuyrukluyıldızları oluşturması, Güneş'in yaşam süresiyle karşılaştırdığımızda çok kısa bir süre, sadece 10 milyon yıl aldı

Karasal Gezegenler

Karasal (kayasal) gezegenlerin, sadece, bulutsudaki toz parçacıklarının bir araya gelerek oluştuğunu söylemek pek yeterli olmaz İç Güneş Sistemi'nde, günümüze değin kalmış göktaşları büyük oranda kondritlerden oluşur Kondritlerin büyük bölümü, asteroidlerin çarpışmasıyla gezegenlerarası boşluğa saçılan parçalardır

Kondritler, kondrül denen küresel biçimli küçük parçacıkların bir araya gelmesiyle oluşmuştur Kondrüler, başlangıçta 1500-1900 kelvin'i bulan sıcaklıklarda oluştular Soğuyarak katılaştıklarında, onları şimdi gördüğümüz gibi, bir araya gelmemişlerdi; damla biçimleriyle Güneş'in çevresinde dönüyorlardı

Yüz yılı aşan bir süre önce, mikroskopuyla göktaşlarını inceleyen Henry Cliffton Sorby adlı bir bilim adamı, kondritlerin, yağmur damlasına benzeyen camsı parçacıkların bir araya gelerek oluşturduğu taşlar olduğunu söyledi Sorby, aynı zamanda, bu göktaşlarının gezegenlerin oluşumundan artakalan madde olduklarını da öne sürdü O zaman için oldukça iyi bir yaklaşımdı bu

Daha sonra, kondrülleri laboratuvar fırınlarında yapma deneyleri gösterdi ki bunların göktaşlarındaki özelliklerini kazanmaları için, bir saatten kısa sürede soğumaları gerekiyor Bu, kondrüllerin bulutsunun merkezi yakınlarındaki yüksek sıcaklıkta eridiği düşüncesinin doğru olmadığını gösteriyor Çünkü, bu bölgede, bir saat gibi kısa bir sürede soğumaları olası değil

Bu, ancak, diskin iç bölgelerinin, birtakım yüksek enerjili olaylarla daha dışarıda kalan katmanları etkilemesiyle açıklanabilir Bu tür yüksek enerjili atmaların doğası hakkında pek bir şey bilinmiyor; aslında, gerçek olup olamayacakları da

Kondrüller ve toz parçalarının nasıl olup da bir araya gelerek kondritleri oluşturmaya başladığı pek de iyi anlaşılmış değildir Çünkü, bu küçük cisimler arasındaki kütleçekimi, birbirlerine yapışmalarını sağlayacak kadar güçlü olamaz Saniyede bir metrelik hızla çarpışan parçacıklar, birbirlerine Van der Waals çekiminin (elektrostatik yüklerin neden olduğu kısa menzilli kuvvet) etkisiyle yapışabilirler

Ancak, sadece Van der Waals kuvvetleri, bulutsunun çalkantılı ortamında çarpışarak birleşen bu parçacıkları bir arada tutamaz Nasıl olduğu tam olarak anlaşılmış olmasa da herkes, gezegenlerin bir şekilde bu parçacıkların birleşmesiyle oluştuğundan emin Bu topaklanmalar sonucu, birkaç cm çapa ulaşan parçalar, artık ortamdaki çalkantılardan daha az etkilenirler

Yörüngede dolanan katı bir cisim, (bir parça kondrit gibi) Güneş'in kütleçekimi sayesinde dengede kalır Ancak ortamda bir miktar gaz varsa, bu gaz, cismin hızının azalmasına ve sarmal bir yol izleyerek Güneş'e doğru yakınlaşmasını sağlar Yani, cisim, çapı giderek küçülen bir yörünge izler

Merkeze doğru ilerleyen kondrit parçaları, buralarda birikirler ve bir araya gelerek büyürler Bu tür bir cisim, yaklaşık bir kilometrelik çapa ulaşınca, artık gaz direnci onun üzerindeki etkisini kaybetmeye başlar ve cisim hemen hemen sabit bir yörüngede kalır Yaklaşık bu boyuta ulaşan gökcisimlerine "gezegenimsi" denir

Yeni oluşmakta olan bir gezegen sisteminde, benzer boyutlarda çok sayıda gezegenimsi bulunur Yörüngeleri, birbirlerine göre az ya da çok farklı olacağından, birbirlerinden farklı hızlarda hereket ederler Birbirlerine yakın yörüngede olanlar, yakın hızlarla hareket ederler ve kütleçekimleri birbirlerini etkiler Kütleçekimi, yörüngelerde küçük sapmalara neden olur ve bu da çarpışmalara yol açabilir

Eğer çarpışma yeterince yavaş gerçekleşirse, iki kütle birleşir ve daha büyük bir gezegenimsi ortaya çıkar Çarpışmalar sürdükçe cisim büyür Eğer, çarpışma hızlı gerçekleşirse, her iki cisim de dağılabilir

Bilim adamları, bir sistemdeki gezegen oluşumunun ne kadar süreceğini, bilgisayar yardımıyla hesaplamaya çalışıyorlar Yaptıkları hesaba göre, gezegenimsiler oluştuktan yaklaşık 20 bin yıl sonra Ay boyutunda yüzlerce cisim ortaya çıkıyor

Gezegenlerin hemen hemen tam boyutlarına ulaşmalarıysa yaklaşık 10 milyon yıl alıyor Kalan gezegenimsilerse sonraki 10 milyon yıl içerisinde gezegenlerce yutuluyor Bu çarpışmalar nedeniyle, gezegenler oluşumlarının ilk dönemlerinde sürekli etkin kalıyorlar

Alıntı Yaparak Cevapla

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Eski 09-11-2012   #5
Prof. Dr. Sinsi
Varsayılan

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?



Asteroid Kuşağı

Karasal gezegenlerle dev gezegenler arasındaki bölgede Asteroid Kuşağı yer alır Burada, bir gezegen olarak nitelendirilebilecek kadar büyük bir gökcismi yoktur; kuşağın toplam kütlesi, Ay'ınkinden küçüktür Güneş Sistemi'ndeki gezegenlerin dağılımına baktığımızda, bir düzen olduğu fark edilir

Her gezegenin yörüngesi, bir içtekinden %75 geniştir Bu düzene göre, Asteroid Kuşağı'nın yerinde de bir gezegen olması gerekirdi Peki, bu gezegene ne oldu? Bu konuda kesin bir kanıt olamamakla birlikte, bazı gezegenbilimcilere göre, bir zamanlar burada oluşmakta olan bir gezegen Jüpiter'in çok güçlü kütleçekiminin etkisiyle parçalandı Ya da, buradaki gezegenimsiler hiçbir zaman bir araya gelerek gezegen oluşturamadılar

Kuşakta bulunan asteroidlerin toplam kütlesinin az olması, Jüpiter'in ya da birbirlerinin kütleçekimlerinin etkisiyle yörüngelerinden çıktığı düşüncesini destekliyor Yörüngeden ayrılan cisimler, ya Güneş'in çevresinde başka bir yörüngeye oturuyorlar ya da Güneş ya da dev gezegenler tarafından yutuluyorlar Zaman zaman, karasal gezegenlerle de çarpışabiliyorlar

Dev Gezegenler

Güneş bulutsusunun dış katmanları, iç katmanların aksine suyun katı halde bulunabilmesine olanak tanımıştı Bu ikinci bölgede, kar taneleri, iç bölgelere oranla 10 kez fazlaydı Gaz moleküllerinin bu bölgede çok daha fazla olması nedeniyle, kuşkusuz burada oluşacak gezegenlerin kimyasal bileşimleri de karasal gezegenlerden çok farklı olmalıydı

Suyun ana bileşenlerinden oksijen Güneş Sistemi'nde magnezyum, silisyum ve demir gibi karasal gezegenleri oluşturan elementlerden çok daha fazladır Bu da dev gezegenlerde bol miktarlarda su bulunması gerektiğini düşündürüyor

Ne var ki, en büyük gezegenler Jüpiter ve Satürn, beklendiği gibi ağırlıklı olarak sudan değil, büyük oranda hidrojen ve helyumdan oluşuyor Yani, bu gezegenlerin bileşimi, Güneş'inkiyle benzerlik gösteriyor Jüpiter ve Satürn'ün bileşimleri, saf hidrojen ve helyumdan oluşmuş kar taneleri sayesinde oluşmuş olamaz Çünkü, gezegenlerin oluşumları sırasında, ortam bu gazların yoğunlaşabilmesi için fazla sıcaktı

Jüpiter ve Satürn, kütlelerinin önemli bir bölümünü, doğrudan bulutsudan almış olmalılar Yani, karasal gezegenler gibi, toz ve buzdan oluşmuş çekirdekleri, yeterli kütleye ulaştığında, bulutsudaki gazı kütleçekimleriyle toplamış olabilirler Jüpiter ve Satürn'ün hidrojen ve helyum ağırlıklı bileşimlerine karşılık, Uranüs ve Neptün çoğunlukla katı halde bulunabilen gazlardan oluşur: Su, amonyak ve metan Ayrıca, dış katmanlarda hidrojen ve helyum bulunur Gezegenlerin çekirdeğiyse kaya ve demirden oluşur

Uydular

Uyduların oluşumuyla ilgili en popüler modellerden birisi şöyle: Dev gezegenler, yoğunlaşmanın etkisiyle başlangıçta çok sıcaktı Sıcaklığın etkisiyle, günümüzdekine oranla çok daha geniştiler Zamanla soğuduklarında küçüldüler Oluşum aşamalarının sonlarına doğru, gezegenleri oluşturan gaz ve tozun artakalanı onların çevrelerinde dönmeyi sürdürüyordu Zamanla, gazın büyük bölümü ya gezegenlerce yutuldu ya da dağıldı Kalan toz ve bir miktar gaz, küçük bir Güneş Sistemi gibi, bir araya gelerek uyduları oluşturdular

Uyduların çoğu yukarıda söz ettiğimiz biçimde oluşmuş olsa da, bazı uyduların gezegenler tarafından sonradan yakalanmış oldukları düşünülüyor Bu uydular ya çok elips biçimli yörüngelerde dolanıyorlar ya da dönme düzlemleri farklı Bu uydular arasında, Phoebe, Triton ve pek çok küçük uydu var Mars'ın uyduları Phobos ve Deimos da öyle

Bizim doğal uydumuz Ay'ın oluşumu başlı başına bir öykü Ay'ın oluşumu üzerine ortaya konan en iyi varsayım, onun Dünya'ya çarpan bir gezegenimsi tarafından koparıldığı şeklinde Çarpışma, Dünya'dan önemli miktarda erimiş kaya ve gazı kopararak, çevresine dağıttı Bu maddenin bir bölümü Dünya'ya geri düşerken, bir bölümü de uzaya saçıldı

Roche sınırı denen ve Dünya'nın yüzeyine yaklaşık 10 bin km'den uzakta kalan cisimler, yörüngeye girdiler ve topaklaşmaya başladılar (Roche sınırı altında kalan cisimler, gezegenin güçlü kütleçekimi etkisinden dolayı bir araya gelemezler) Zamanla, parçalar bir araya geldi ve Ay oluştu

Kuyrukluyıldızlar

"Güneş Sistemi nerede bitiyor" sorusuna verilen geleneksel cevap, Plüton'un yörüngesidir genellikle Buna karşın, günümüzde biliyoruz ki, Güneş Sistemi'nin sınırları çok daha ötelere gidiyor Günümüzden yaklaşık 50 yıl önce, Kenneth Edgeworth ve Gerard Kuiper, birbirlerinden bağımsız olarak, Plüton'un yörüngesi civarında, gezegenleri oluşturan maddeden artakalan bir kuşak bulunması gerektiğini öngördüler

Nitekim, son yıllarda yapılan teleskoplu gözlemler, bu cisimlerin varlığını kanıtladı Bu kuşakta, her biri yaklaşık bir kilometre ya da daha büyük çaplı, 200 milyon gökcismi olduğunu hesapladı Kuiper Kuşağı olarak adlandırılan bu kuşak, Plüton ve uydusu Charon'u da içeriyor Büyük olasılıkla Neptün'ün uydusu Triton da bir zamanlar bu kuşağın üyesiydi Triton ve bu iki uydu, bu kuşağın en büyük üyeleri olmalı

Kuşaktaki gökcisimlerinin yörüngelerinden çıkıp iç Güneş Sistemi'ne yönelmelerini sağlayan etki kendi aralarındaki çarpışmaların yarattığı kararsızlıklardır Kısa dönemli kuyrukluyıldızlar, büyük olasılıkla Kuiper Kuşağından gelirler Uzun dönemli kuyrukluyıldızların geldiği başka bir bölge daha olmalı 1950 yılında, gökbilimci Jan Hendrick Oort, bu cisimlerin kaynağıyla ilgili bir varsayım ortaya attı

Oort'a göre, uzun dönemli kuyrukluyıldızlar, Güneş'i küresel biçimde çevreleyen bir bölgeden geliyorlardı Oort Bulutu olarak adlandırılan bu bölge hiç görülmediyse de, yakınlarımıza gelen uzun dönemli kuyrukluyıldızların yörüngelerine baktığımızda, bizi oraya götürüyor

Oort Bulutu'nun oluşumu şöyle anlatılıyor: Dev gezegenler, özellikle de Jüpiter, yakınlarından geçen gezegenimsileri çok basık yörüngelere yerleştirir Hatta bazen bu cisimler, Güneş'in çekim kuvvetinden kurtularak bir daha dönmemek üzere yıldızlararası ortama gönderilirler Ancak, büyük bir kısmı, Güneş'in çekim etkisinden kurtulamaz ve basık, elips biçimli yörüngelerinde dönerler

Güneş'ten uzak olduklarında, hızları da azaldığından, zamanlarının büyük bölümünü, yörüngelerinin uzak yarısında, yani Oort Bulutu'nda geçirirler Oort Bulutu'nun dış sınırının yarıçapı, yani Güneş'e uzaklığı yaklaşık bir ışık yılıdır İşte, bu uzaklıktan sonra, Güneş Sistemi'nin bittiğini; yıldızlararası ortamın başladığını söyleyebiliriz

Hava Basıncı

Dünya, kalınlığı 800 km kadar olan bir hava katmanı ile çevrili Biz, üzerimize bir basınç uygulayan, atmosfer dediğimiz bu akışkan katmanın dibinde yaşıyoruz Aristo’nun doğada boşluğun varolmayacağı iddiasına 17 yüzyılda havaya ve gazlara ilişkin kuramların geliştirilmesine katkıda bulunan Galileo Galilei, Evangelista Torricelli, Blaise Pascal ve Otto Von Guericke gibi bilim adamlarınca karşı çıkıldı

Bu bilim adamları, dünya atmosferinin bir basınç oluşturduğunu kanıtladılar ve küçük kaplardaki havayı boşaltabilen pompalar yaparak laboratuvarlarda ürettikleri 'boşluk'üzerine araştırmalar yaptılar Bu bilim adamlarından bazıları, boşluğun, organizmaların hayatına yardımcı olup olamayacağı veya ışığı ya da sesi geçirip geçiremeyeceğini öğrenmeye çalışırken diğerleri de, boşluğunu olası işlevsel uygulamalarını bulmaya çalıştılar

Boşluk kavramından işlevsel amaçlarla yararlanmaya çalışanlardan biri de Fransız bilim adamı Denis Papin'di Denis Papin (1647-1712), silindirlerin ve pistonların içindeki havayı boşaltarak buharla ilgili deneyler yapan ilk bilim adamlarındandı

Papin, Hollandalı bilim adamı Christian Huygens'in önerileri üzerine yaptığı ilk deneylerde, bir piston ve bir valfa bağlanmış olan dikey bir silindirin içindeki havayı boşaltmak için az miktarda barutla elde edilen patlamadan yararlanmıştı Patlayan barutun pistonu hareket ettirmesi beklenmiyordu; burada Papin'in patlamayla amaçladığı şey, silindirin içindeki havadan kurtulmaktı; böylelikle pistonun kısmi olarak havası alınmış uzama doğru aşağıya inmesine neden olacaktı Ama barutun patlamasıyla arta kalan gazımsı maddeler, Papin'in silindirinde mükemmele yakın bir boşluğun oluşmasını imkansız kılmışlardı Bu nedenle Papin, bir sonraki deneyde düzeneğinde buhar kullanmaya karar verdi

Madencilikte en büyük sorun, maden ya da kömürün çıkarılması değil, ocakta biriken suyun boşaltılmasıydı 1630 yılında Galile, bu sorunu çözmek için ilk tulumba düzeneğini (vakum pompası) kurdu Bir boruyu toprağın içine gömüp tahta bir pistonu bunun içine yerleştirdi Bu ilk vakum pompasının gerektiği gibi çalıştığı söylenemez Ama gizin perdesi açılmıştı

1644 yılında Galile'nin öğrencilerinden Evangelista Torricelli (1608-1647), su yerine yoğunluğu suyunkinden 136 kat büyük olan civayı, ustasının silindiri yerine de cam boru koyarak gerçekleştirdiği benzer bir deney sonucu ilk civalı barometreyi buldu Civanın ya da suyun cam boruda yükselmesinin nedeni atmosfer basıncıydı

Toriçelli, bir metre kadar uzunlukta, bir ucu kapatılmış bir cam tüp aldı, civa ile doldurdu, açık ucunu da civa çanağı içine dikkatlice daldırdı ve tüpü dik olarak tuttu Civanın bir kısmı civa çanağına aktı ve tüpün kapalı ucunda bir "boşluk" ortaya çıktı Öyle ya tüpün üst ucu atmosfere kapalıydı ve cam çeperler ile civa içinden hava geçemeyeceğine göre bu üst uç tam bir boşluk olmalıydı

Toriçelli de böyle düşünüyordu Bu deneyi ile Toriçelli, atmosfer basıncını ölçtü ve bu basıncın, 103 metrelik su sütunu ile ya da 760 milimetrelik civa sütunu ile dengelendiğini buldu Civanın üstünlüğü, çok kısa bir tüp gerektirmesidir

Blaise Pascal (1623-1662), 1648 yılında yaptığı deneyle, Toriçelli'nin çalışmalarını bir adım daha ileri götürdü Pascal, civalı bir baromatreyi, dağın eteğinde diğerini dağın doruğunda tutarak, atmosfer basıncının yükseklikle değiştiğini gösterdi Dağın dibindeki ve tepesindeki hava sütununun ağırlığı farklıydı Bu nedenle doruktaki basınç düşüktü

Dünya üzerinde en yüksek dağ zirvesi Everest (8,848 metre), en çukur okyanus dibi (Mariana çukuru 11 035 metre) arasında yaklaşık 20 kilometrelik düzey farkı vardır

Barometre o zamanlardan bu yana, meteoroloji biliminin vazgeçilmez aracı olarak kullanılılıyor Blaise Pascal’ın Roma ile Mısır arasındaki talihsiz küçük savaşla (İÖ 31: Actium Savaşı) ilgili olarak söylediği ilginçtir: " Kleopatra’nın burnu biraz daha küçük olsaydı, bütün dünya tarihi daha farklı olabilirdi"

Alıntı Yaparak Cevapla

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Eski 09-11-2012   #6
Prof. Dr. Sinsi
Varsayılan

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?



Vakumda Yaşam Var mı?

Guericke'nin hava pompasının gelişmesine katkısı yadsınamaz; ancak ona bir deha gözüyle bakamayız O, olsa olsa iyi bir teknisyen sıfatını hak etmiştir Hava pompasından daha fazla nasıl yararlanılabileceğini göstermek, birinci sınıf bir deha olan Robert Boyle'a (1627-1691) kalmıştı

Boyle, havası boşaltılmış kap içine koyduğu çeşitli nesneler üzerinde havasızlığın etkisini belirleme yoluna gitti Boyle'un hava pompasıyla ilgili ilk deneyleri 1658-59 yıllarına rastlar Sonuçlar, 1660'ta yayınlandı Kendi dönemindeki pek çok bilim adamında görüldüğü gibi, Boyle'un da bilim sevgisi, bilimin önemli pratik yararlar sağlayacağı inancıyla pekişmişti

Nitekim kitabında, başta gelen amacının, "solunum üzerinde daha iyi bilgi edinerek insaoğlunun sağlıklı yaşamına yardımcı olmaktı" diyor Öte yandan kitabı okuyanlar, pratik yarar kaygısının ötesinde, ondan daha güçlü başka bir ilginin varlığını sezmekte gecikmezler Bu da, Boyle'un katıksız bilgi arayışı, deneysel yöntemle yeni şeyler keşfetme tutkusudur

Kullandığı yöntem temelde çok basitti: Aklına gelen değişik nesneleri, havası boşaltılmış kaba koymak, havasızlığın bunlar üzerindeki etkisini saptamak

Örneğin ince bir ipliğe bağladığı saati kabın içine sarkıttı Kabın havası henüz boşaltılmadan saatin tik tak seslerini duymakta bir güçlük yoktu Ama kabın havası boşaltılınca tik tak sesleri giderek zayıfladı ve kayboldu Oysa saatin çalıştığı, akrep ve yelkovanından bellidir

Boyle bu deneyle, sesin iletilmesi için havanın gerekli olduğunu göstermiştir Daha doğrusu, şimdi bildiğimiz gibi, ses, dalgalar halinde havada yayılır Havasız bir yerde ses yayılamaz ve duyulamaz Burada bir şey daha var; biraz önce havasız ortamda saatin kollarının hareket ettiğinin görüldüğü söylemiştik Demek ki havasızlık, sesin duyulmasını engellediği halde, görmeyi yani ışığın yayılmasını engellememiştir

Boyle, ışık gibi manyetik çekimin de havaya bağımlı olmadığını belirlemiştir Kimya biliminin kurucularından Robert Boyle da kalın cam kürelerle su barometresi denebilecek vakum oluşturdu Cam kürenin içine kuş, fare ya da benzeri deney hayvanları koyarak vakum ortamında canlıların yaşayamayacağını gösterdi

Hava boşaltıldığında, hayvanların solunum güçlüğü çektiği ve çok geçmeden öldüğü görülüyordu Böylece havanın solunum ve yaşam için gerekli olduğu anlaşıldı Yine vakum ortamında ateş de yanmıyordu

Boyle bir adım daha ileri gitti Solunum ve yanma havaya bağımlıydı Buna göre bu iki olgu arasında ortak özellik olduğu sonucu kolayca çıkmaz mıydı? Bu soruyu çekinerek ortaya atar; ama şimdi onun haklı olduğunu iyice biliyoruz Her ikisi de oksijen gazının ortamda varlığı ya da yokluğuyla ilgilidir

Bildiğiniz gibi yanan bir madde oksijenle birleşir; solunumda da oksjien gazı, kan aracılığıyla vücudun diğer bölümlerine taşınır ve gittiği yerde diğer maddelerle birleşir Solunum, bir tür yavaş yanma olayıdır Bu noktanın açıklığa kavuşması insanoğlunun yüz yıldan çok zamanını almıştır Boyle'un bu deneyleri kimya alanında hava ve gazların özelliklerinin araştırılmasının başlangıcını oluşturma açısından da değer taşıyor

Boyle, hava pompasıyla bir dizi deney yapmıştı O'nun adıyla anılan gaz yasasına, Boyle Yasası'na değinmeden geçemeyiz: Miktarı ve sıcaklığı sabit tutulan bir gazın hacmi ile basıncı ters orantılı olarak değişir

Küresel Isınma

Birkaç yıl öncesine kadar küresel ısınma denildiği zaman, herkesin aklına ancak korku filmlerinde görülebilen türden korkunç sahneler geliyordu Gırtlağına kadar sulara gömülmüş Özgürlük Heykeli, veya tropik hastalıklardan kırılıp dökülen Eskimolar, tümüyle suların altında kalmış bir Venedik, kıyamet senaryolarının yalnızca birkaçı Ancak son yıllarda iklim değişikliklerine ilişkin bilgiler çoğaldıkça, küresel ısınma tehtidinin politik ve bilimsel önlemlerle savuşturulabileceği umudu doğdu

İnsanoğlunun yüreğine su serpen bilgiler özetle şunlar: Fizik kurallarına göre Güneş ışınları Yeryüzü'ne düştüğü zaman, Yeryüzü aynı miktarda enerjiyi Uzay'a geri yansıtır Yeryüzü, bu bağlamda kızılötesi ışınları atmosfer içinden geçirir Burada molekül kümelerinin oluşturduğu bir çeşit ''battaniye'' (başta karbon dioksit olmak üzere), giden radyasyonu bir süre tutarak, Yeryüzü'nün ısınmasına neden olur

Moleküller seralardaki cam gibidir Bu nedenle bu olguya sera etkisi adı verilmiştir Sera etkisi, yeni bir olgu değil; Dünya'nın oluşumundan bu yana hükmünü sürdürüyor Sera etkisi olmasaydı, Dünya'nın yüzey sıcaklığı -20 derece olurdu ve okyanuslar buz tutardı Sonuçta Dünya'da yaşam olmazdı

Böylece gelecek milenyumda sorulması gereken soru, sera etkisinin devam edip etmeyeceği ile ilgili değil, fosil yakıtı kullanmaya devam eden insanoğlunun atmosfere salacağı karbondioksitin sera etkisinde önemli bir değişiklik yaratıp yaratmayacağı ile ilgili olmalı

Sera etkisine yol açan etmenler bilindikten sonra, gelecek yüzyılda Dünya'nın ne kadar ısınacağı konusunda bir tahminde bulunmak da çok zor olmayabilir Ne yazık ki bu o kadar kolay değil Dünya, çok karmaşık bir gezegen; bu nedenle Yeryüzü'nü bir bilgisayar modeline indirgemek o kadar kolay değil Sera etkisiyle ilgili tüm tartışmalarda, Gezegen'i tek bir modele indirgeyememenin getirdiği bilinmezlik, kesin bir yargıya varmayı güçleştiriyor

Yine de herkesin birleştiği tek nokta, atmosfere salınan karbondioksit miktarının giderek artması Bugün günde 360 ppm (parts per million) olan karbondioksit miktarı, 1958 yılında 315 ppm; Endüstri Devrimi'nden önce ise yaklaşık 270 ppm olduğu sanılıyor

Buna bağlı olarak Dünya'nın sıcaklığının da son yüzyılda 05 derece arttığı tespit edildi Bu arada yapılan ölçümlere göre 90'lı yıllar yakın tarihimizin en sıcak 10 yılı olarak kayıtlara geçti Ancak bilimsel çevreler bu konuda çelişkili bir tavır sergiliyor Kaldı ki değişik cihazlarla yapılan son uydu kayıtları, Dünya'da bir ısınma eğilimi olduğunu yalanlıyor

Eğer orta derecede bir ısınma olduğu varsayımından yola çıkarsak, insanların bu olgudan sorumlu olup olmadıklarını ve gelecekte Dünya'daki iklimlerin nasıl değişeceğini görmek için bilgisayar modellerinden yararlanmamız gerekecek Ne var ki modeller, Antartik Bölgesi'ndeki buzullardan, Sahra Çöllerindeki kumların yapısına dek pek çok değişkeni içerdiği için çok karmaşık bir görüntü veriyor

Bu elektronik simülasyonlarda önemli bir yer tutan bulut veya okyanus akıntıları gibi etmenler hata kaldırmıyor; en ufak bir hesaplama hatası geleceğe ilişkin tahminlerde çok büyük yanılgılara yol açabiliyor Geleceğe yönelik tüm bilimsel öngörülerde olduğu gibi bilim adamları bu konuda da yetersiz verilere dayanarak önemli kararlar almak zorunda kalıyorlar

Küresel ısınmaya ilişkin en güvenilir tahminler Hükümetlerarası İklim Değişikliği Paneli'nden (IPP) gelmektedir Bu konsorsiyumda 2000'den fazla iklim bilimcisi çalışmaktadır Son yapılan tahminlere göre, 2100 yılında Dünya'nın sıcaklığı 1 ile 35 derece arasında artacak En iyi tahminle artış 2 derece olacak

Tarihsel ısınma trendine bir gözattığımız zaman MS 950 ile 1350 yılları arasında sıcaklığın bugüne göre 1 derece fazla olduğunu görürüz Bilim adamlarına göre bu zaman dilimi tarihin en düzgün, en zararsız hava rejimine sahipti Oysa bundan 10000 yıl önce, son Buzul Çağı'nda sıcaklık bugüne göre 5 derece daha düşüktü

Geçmişte yaşanan bu sıcaklık dalgalanmaları bugün yaşansa, bazı bölgeler sular altında kalırken, bazı bölgeler kuraklıktan kırılacak ve sonuçta insanoğlu çeşitli hastalıklarla uğraşmak zorunda kalacak Uygarlık, geçmişte bu değişikliklere maruz kalmış ve ayakta kalmış; ancak benzer değişiklikler bugün meydana gelse etkileri daha hızlı ve daha yıkıcı olacak

IPP'nin tahminlerindeki bu farklılık insanların havaya saldıkları karbondioksit miktarının bilinememesinden kaynaklanıyor Çünkü insanların küresel ısınmaya vereceği tepki bilinemiyor Büyük bir olasılıkla insanoğlu aşırı karbonu kontrol altına alabilecek bir teknoloji üretecek

Bazıları karbondioksiti kontrol edebilmek için bacalardan salınan gazı yeraltına vermeyi önerirken, kökten çözümden yana olanlar en başta karbondioksit üretimini kontrol altına almanın en akılcı yol olduğunu ileri sürüyor

Bu görüş 1997'de 84 ulus tarafından imzalanan Kyoto Protokolu'nda dile getirildi Ancak Amerikan Senatosu bu kararı onaylamadığı için ABD'de arabaların, santrallerin ve fosil yakıtı kullanan diğer kurumların ürettiği karbon miktarına yasal sınırlama getirilemedi

Küresel ısınma konusuna aşırı tepki vermek ne kadar yanlışsa, gözardı etmek de o kadar yanlış Alternatif enerji kullanımı ve karbon emisyonunu kontrol altına almak gibi sağduyulu politikaların geleceği garanti altına alacağına kesin gözüyle bakılıyor Bu tür önlemlerin küresel ısınma tehdidini ortadan kaldırıp kaldırmayacağı şimdilik bilinmiyor, ancak en azından torunlarımız bu kararları aldığımız için bizlere teşekkür edecek

Litosfer

Yeryuvarı dıştan içe doğru çeşitli bileşim ve fiziksel özelliklerdeki kalın katmanlardan yapılmıştır Bu katmanlardan herbiri küresel şekillidir En dıştan içe doğru sırasıyla atmosfer (hava küre), biyosfer (canlı küre), hidrosfer (su küre) ve litosfer (kayaç küre) yer alır Litosfer'in altında ise, Pirosfer ve Barisfer bulunmaktadır Litosferde Si ve Al maddelerinin yoğunluğundan, bu tabakaya Sial adıda verilir Barisfer + Pirosfer = Endosfer adı verilir

Yeryüzünün 100 km derinliğinden başlayarak manto içindeki kayaçlar sağlamlıklarını büyük ölçüde kaybedecek kadar yüksek sıcaklığa ulaşırlar Kayaçların karamela veya zift gibi plastik, kolayca şekil değiştirebilen hale geldikleri bölgelere Astenosfer (zayıf küre) denir Astenosfer 350 km derinliğe kadar uzanır Astenosfer üzerinde dışa doğru yaklaşık 100 km kalınlığında katı yer katmanını oluşturan kayaçlar, plastik astenosferden daha sert ve rijittir Bu sert dış bölgeye Litosfer (kayaç küre) denir Litosfer, okyanus tabanlarında yaklaşık 70 km, kıtalarda ise 100 km kalınlıkta olabilir

Levha (plaka) adı verilen ve büyük kırık zonlarıyla sınırlanan çok sayıda mozaik şeklindeki parçalardan oluşmuştur Yeryuvarında litosferik levhalar,yine üst mantoya ait olan ve 70-100 km derinden başlayıp 200 km derine kadar inen ve düşük hız zonu olarak nitelenen astenosfer üzerinde yüzer durumdadır

Meteor

Meteor sözcüğü, gökyüzünde olağanüstü olay anlamındaki latince meteoron'dan gelir Meteor, güneş sistemindeki cisimlerin dünya atmosferine düşmesiyle, yüksek hızlarda hava ile sürtünme sonucu akkor haline gelerek, gece yeryüzünden kısa süreli bir ışık çizgisi şeklinde görülmesine verilen addır

Halk arasında 'kayanyıldız', 'yıldız kayması' ve benzeri sözcüklerle ifade edilen olaydır Bu olay tipik olarak atmosferin 80-110 km'leri arasında oluşur Karanlık bir gecede saatte 8-10 meteor izlemek olasıdır Her yıl belli zamanlarda oluşan meteor yağmurları sırasında saatte 100'ün üzerinde meteor izlenebilir Çok parlak meteorlara Ateş Topu adı verilir ve bunlardan bazılarının yüzeye ulaştığı olur

Meteoroid sözcüğü ise olayı değil, düşen cismin kendisini ifade eder Meteoroid, güneş ya da herhangi bir güneş sistemi cisminin çevresinde yörüngede olan ve kuyrukluyıldız ya da asteroid olarak sınıflanamayacak kadar küçük olan cisimlerdir Mikro boyuttaki cisimler ve kozmik toz partikülleri de mikrometeoroid olarak anılırlar

Meteorit ise tamamen buharlaşamadan dünya yüzeyine ulaşan meteoroidlerdir Metoritler üzerinde pek çok çalışmalar yapılmaktadır Bu araştırmalar, meteoritin ana cisminin kaynağı, yapısı ve tarihini saptamak ve güneş sisteminin ve evrenin oluşumu hakkında bilgi edinebilmek amacını güder

Meteoritlerin büyük bir bölümünün kaynağı asteroidlerdir Bazılarının 4 Vesta asteroidi kaynaklı olduğu sanılmaktadır Bir bölümü de kuyrukluyıldızlardan gelir Az sayıda meteorit'in (23 tanesinin) ay kökenli ve (22 tanesinin) Mars kökenli olduğu saptanmıştır

Yerçekimi

Bu kuvvet algılayabildiğimiz tek kuvvet olmasına rağmen, aynı zamanda da hakkında en az bilgi sahibi olduğumuz kuvvettir Yerçekimi olarak bildiğimiz bu kuvvetin gerçek adı "kütle çekim kuvveti"dir Şiddeti diğer kuvvetlere göre en düşük kuvvet olmasına rağmen, çok büyük kütlelerin birbirini çekmelerini sağlar

Evrendeki galaksilerin, yıldızların birbirlerinin yörüngelerinde kalmalarının nedeni bu kuvvettir Dünyanın ve diğer gezegenlerin Güneş'in etrafında belirli bir yörüngede kalabilmelerinin nedeni de yine yerçekimi kuvvetidir Bizler bu kuvvet sayesinde yeryüzünde yürüyebiliriz Bu kuvvetin değerlerinde bir azalma olursa yıldızlar yerinden kayar, dünya yörüngesinden kopar, bizler dünya üzerinden uzay boşluğuna dağılırız

En ufak bir artma olursa da yıldızlar birbirine çarpar, dünya güneşe yapışır ve bizler de yer kabuğunun içine gireriz Tüm bunlar çok uzak ihtimaller olarak görülebilir, ama bu kuvvetin şu an sahip olduğu şiddetinin dışına çok kısa bir süre dahi çıkması, bu sonlarla karşılaşmak için yeterlidir

Ünlü moleküler biyolog Michael Denton, Nature's Destiny: How the Laws of Biology Reveal Purpose in the Universe (Doğanın Kaderi: Biyoloji Kanunları Evrendeki Amacı Nasıl Gösteriyor) adlı kitabında bu gerçeği şöyle vurgular: Eğer yerçekimi kuvveti bir trilyon kat daha güçlü olsaydı, o zaman evren çok daha küçük bir yer olurdu ve ömrü de çok daha kısa sürerdi Ortalama bir yıldızın kütlesi, şu anki Güneşimiz'den bir trilyon kat daha küçük olurdu ve yaşama süresi de bir yıl kadar olabilirdi Öte yandan, eğer yerçekimi kuvveti birazcık bile daha güçsüz olsaydı, hiçbir yıldız ya da galaksi asla oluşamazdı

Diğer kuvvetler arasındaki dengeler de son derece hassastır Eğer güçlü nükleer kuvvet birazcık bile daha zayıf olsaydı, o zaman evrendeki tek kararlı element hidrojen olurdu Başka hiçbir atom oluşamazdı Eğer güçlü nükleer kuvvet, elektromanyetik kuvvete göre birazcık bile daha güçlü olsaydı, o zaman da evrendeki tek kararlı element, çekirdeğinde iki proton bulunduran bir atom olurdu

Bu durumda evrende hiç hidrojen olmayacak, yıldızlar ve galaksiler oluşsalar bile, şu anki yapılarından çok farklı olacaklardı Açıkçası, eğer bu temel güçler ve değişkenler şu anda sahip oldukları değerlere tamı tamına sahip olmasalar, hiçbir yıldız, süpernova, gezegen ve atom olmayacaktı Hayat da olmayacaktı

Yıldızların Güç Kaynakları

Bir an için kütleçekiminin Güneş'in tek güç kaynağı olduğunu düşünelim Oluşum sürecindeki ilkel Güneş'in dağınık yıldızlararası gaz bulutu halinden başlayarak çökmesi sırasında merkezdeki sıkışma arttıkça sıcaklık da artar Güneş'in sahip olduğu toplam kütle çekimi enerjisi E=GM-/R olarak gösterilebilir Burada G Newton'un kütle çekim sabiti, M Güneş'in kütlesi, R ise yarıçapıdır M=2x 1033 gram ve R=7xlOH) cm alınırsa Güneş'in sahip olduğu toplam kütleçekimi enerjisi 4xl048 erg olarak bulunur

L ile gösterilen Güneş'in ışıma gücü -yani enerjisini yayma hızı- ise saniyede 4xl033 erg civarındadır Dolayısıyla gücünü yalnızca kütleçekimi enerjisinden alsaydı, Güneş'in E/L oranından hesaplanabilecek yaşam süresinin yaklaşık 30 milyon yıl olması gerekirdi Bu ise Güneş sistemindeki en eski kayaların yaşı olan beş milyar yıldan çok daha kısa bir süredir Bu çok açık çelişkinin çözümü, nükleer enerjidedir

Modern simya olarak adlandırabileceğimiz nükleer füzyon yoluyla elementlerin birbirine dönüşmesi yıldızlara gücünü veren enerji kaynağıdır Evrende en bol bulunan element olan hidrojen, Güneş'in merkezindeki yoğun sıcaklık ve basınç altında yavaş yavaş helyuma dönüşmektedir Bir helyum atomunun kütlesi, dört hidrojen atomunun toplam kütlesinden yüzde 07 daha küçüktür Bu kütle farkı hemen hemen saf enerji biçiminde gamma ışınları, nötrino, pozitron ve bu parçacıkların kinetik enerjileri olarak ortaya çıkar Güneş'in merkezinde serbest kalan bu radyoaktif enerji yüzeye yaklaşırken yumuşar ve Güneş atmosferini terkederken hemen hemen tümüyle zararsız sarı ışığa dönüşür Bununla birlikte, yıldızların nükleer yakıtları eninde sonunda tükenir

Güneşimizin yaşam süresini hesaplayabilmek amacıyla, tüm çekirdeğini (ki bu, kütlesinin yaklaşık olarak %10'udur) nükleer yakıt olarak kullanabileceğini varsayalım Einstein'ın meşhur formülüne göre, ilke olarak madde, gram başına c2 erg enerjiye dönüştürülebilir Burada c ışık hızıdır Bu mantık, ancak madde-karşı madde yokolması sırasında sağlanabilecek yüzde yüz dönüşüm verimliliği varsaymaktadır Yıldızlarda ise kesinlikle karşı-madde bulunmaz Yıldızların enerji kaynağı, verimliliği yalnızca yüzde 07 olan nükleer füzyondur

Bu da yıldızların enerji deposunun, eğer tümüyle helyuma dönüşebilirse, çekirdeklerinin kütlesinin yüzde 07'si kadar olduğu anlamına gelir Nükleer reaksiyonların oluşabileceği ölçüde sıcak olan Güneş'in çekirdeği, toplam kütlesinin onda biri kadardır Bu nedenle de Güneş'in enerji deposunun 00007 Mc2 olduğu söylenebilir Burada 01 MQ =2x1032 gram, çekirdeğin kütlesi olup, eşdeğer enerjiyi hesaplayabilmek için bu sayıyı 0007c2 ile çarpıyoruz Bu hesap bize Güneş'in enerji deposunun 14x1051 erg olduğunu söylüyor Bu yakıl, saniyede 4xl033 erg oranında tüketildiğinde yaklaşık 10 milyar yıl yetecek ölçüde çoktur Buradan da Güneş'in, hidrojen yakıtının henüz, yalnızca yansını tüketmiş olduğu sonucuna varıyoruz

Güneş'in çekirdeğinde sürüp giden nükleer reaksiyonların sonuçlarından biri de nötrino adı verilen zayıf etkileşimli parçacıkların üretilmesidir Bütün termonükleer reaktörler nötrino üretirler Nötrinolar bu reaksiyonların kaçınılamaz ürünleridir Güneş'in enerjisini nükleer füzyonla açıklayan teori, nötrinoların Güneş'in merkezinde çok büyük miktarlarda üretildiğini öngörür Çevresiyle etkileşimi son derece zayıf olan bu parçacıklar ışık hızıyla hareket eder ve Güneş'in yüzeyinden doğrudan doğruya dışarıya kaçarlar

Güneş'ten kaynaklanan nötrinolar Güney Dakota'da yeryüzünün yaklaşık iki kilometre altında bulunan Homestake altın madeninde yaklaşık 300 000 litre karbon tetraklorür (GG14) sıvısının gözlendiği büyük ve önemli bir deney sistemi sayesinde algılanabiliyor Yeraltı madeni, kozmik ışınların girişimini önlemek üzere özel olarak seçilmiştir Normal klor izotopu bir nötrino soğurarak radyoaktif bir argon izotopuna dönüşür: CI37 + Nötrino -> Ar37 + Elektron

Her iki ayda bir karbon tetraklorür sıvısı boşaltılmakta, filtre edilmekte ve çok küçük miktarlarda da olsa radyoaktif argon içerip içermediği büyük bir titizlikle araştırılmaktadır Güneş kaynaklı nötrinoların soğurulması nedeniyle her gün bir tane radyoaktif argon oluşacağı öngörülmektedir İki aylık inceleme sonucunda genellikle birkaç tane argon atomuna rastlanmakta, bu yolla da Güneş'te nötrino üretildiği kanıtlanmakladır Bununla birlikte, deney sonucunda saplanan nötrinolar, teorik olarak öngörülen parçacıkların üçte biri kadardır Ya Güneş'in içindeki sıcaklıkla ilgili teorilerimiz, tam doğru değil, ya da nötrinolara ilişkin yeni fizik keşfedilmeyi bekliyor

Güneş'in merkezinde üretilen nötrinoların gerçekten algılanabiliyor olması son derece şaşırtıcı bir sonuçtur Dünyamızdan yüz elli milyon kilometre uzakta çalışan ve Güneş'e enerjisini sağlayan nükleer reaktörün kesin kanıtıdır Bununla birlikte, yaklaşık 20 yıldan bu yana devam eden klor deneyi, yalnızca Güneş'ten kaynaklanan çok yüksek enerjili nötrinolara karşı duyarlıdır Her tür enerjiye sahip Güneş nötrinolarını algılayabilecek deneyler de yoldadır

Bunlardan ikisinde (İtalya ve Rusya'da olanlar) bir nötrino galyum atomuna çarptığında ortaya çıkan germanyum izotopunun radyoaktif çekirdeğini inceleyebilmek amacıyla detektör sıvısı olarak galyum kullanılmaktadır Japonya'da hazırlanan bir üçüncü deneyde sudan saçılan nötrinoların neden olduğu hızlı elektronların saçtığı ışık algılanmaktadır Tüm bu deneyler Güneş kaynaklı nötrinoları saymakta ve kozmik ışınlar tarafından üretilen fazladan nötrinolardan korunmak amacıyla bir dağın altında veya yerin yaklaşık bir kilometre altındaki maden ocaklarında konumlandırılmaktadır

Yıldızların Yaşlanması

İlkel yıldız yavaş bir biçimde büzülerek ısınmaya başlar Merkez bölgelerdeki sıcaklık bir milyon Kelvin'in üzerine çıktığında nükleer reaksiyonlar başlar ve bir yıldız oluş muş olur Bu aşamada merkeze doğru etki yapan kütle çekim kuvveti, merkezdeki basınçtan doğan ve dışarıya doğru etki yapan kuvvet tarafından dengelendiğinden, yıldız hidrostatik dengededir Sıcaklık ve basınç öylesine yüksektir ki, hidrojen atomları tümüyle iyonlaşarak serbest proton ve elektronlara dönüşmüştür

Nükleer füzyon yoluyla enerji üretebilmek için protonlar arasındaki karşılıklı itme kuvvetinin yenilmesi gerekir Nükleer reaksiyonlar yıldıza dengeli ve kalıcı bir ısı kaynağı sağlar Yıldız hidrojen yakıt deposunu tükettiğinde merkezi yeniden büzülür ve sıcaklık da ha yüksek değerlere ulaşır Bu yüksek sıcaklıklarda helyum çekirdekleri (her birinin elektrik yükü hidrojen çekirdeğinin elektrik yükünün iki katıdır) arasındaki itme kuvveti yenilerek helyum füzyonu başlar Ne yazık ki iki helyum atomunun füzyonu 2He4 -> Be8 sonucunda çok çabuk bozunan, dengesiz bir berilyum izotopu ortaya çıkar (Berilyumun dengeli izotopu Be9 biçiminde gösterilir)

Füzyon yoluyla helyumun nasıl daha ağır elementlere dönüşebileceği, iki teorisyen tarafından bulundu Önce, 1953 yılında Bedevin Salpeter He4 ile Be8 elementlerinin ortak bir özelliği bulunduğuna (çekirdekler uyarıldığında benzer enerji seviyelerine sahip olurlar) bu nedenle de iki helyum çekirdeğinin füzyon sonucu kaynaşarak Be8 çekirdeği oluşturma olasılığının çok yüksek olduğuna dikkat çekti Sonuçta, her ne kadar berilyum kendi kendine bozunsa da aynı hızda üretilebileceği ortaya çık Ama berilyumun daha ağır olan karbon elementine dönüşmesi için bu yeterli değildi

Bununla birlikte hemen hemen aynı yıl Fred Hoyle, berilyumla karbonun en yaygın izotopu olan C12'nin de çekirdekleri uyarıldığında en azından bir ortak enerji seviyesine sahip olmaları gerektiğini ileri sürdü Bu ortak enerji seviyesi berilyumun bir helyum çekirdeği daha yakalayarak bir başka reaksiyona daha girme olasılığını arttırıyordu ( bu reaksiyona üçlü alfa süreci adı veriliyor) Bu reaksiyon sonucunda üç helyum çekirdeği kaynaşarak bir karbon çekirdeği oluştururlar Bu durumda berilyum bir ara evre olarak reaksiyon dışı kalır

Yakalama olasılığındaki bu artışlar, bir beyzbol oyuncusuna beyzbol eldiveni vererek onun topu yakalama olasılığını arttırmaya benzer Hoyle'un öngörüsünden yalnızca bir yıl sonra Cj2'nin uyarılmış enerji seviyesinin varlığı bir deneyle doğrulandı Yıldızlardaki karbon üretimi yaşamın sırrıdır: vücutlarımızda bulunan karbon, milyarlarca yıl önce, şu anda çoktan ölmüş bulunan kırmızı dev yıldızların içinde üçlü alfa süreciyle oluşmuştur

Çekirdekte helyum yanmaya başlayınca yıldızın ışıma gücü çarpıcı bir biçimde artar Yıldızın dış katmanları balon gibi şişer ve yıldız bir kırmızı deve dönüşür Örneğin, Güneş'imiz yaklaşık beş milyar yıl sonra bir kırmızı dev haline gelmeye mahkûmdur Dünyamız da bu durumda Güneş'in yakıcı atmosferinin içinde kalacaktır Helyum yaklaşık 100 milyon derecede yanarak karbona dönüşür ve büyük kütleli yıldızların iç geç evrim aşamalarında daha da ağır elementler oluşur Aslında tüm ağır elementler yıldızların içinde çekirdek sentezi yoluyla ortaya çıkar

Dünya Ne Kadar Hızlı

Bir pazar günü kendi kendinize söz verdiniz Hiçbir yere gitmeyeceksiniz Koltuğunuza oturup televizyon seyredeceksiniz Siz öyle sanın Koltuğunuzda otururken bile inanılmaz bir hızla dönüp duruyor, uzayın boşluğunda yol alıyorsunuz

Koltuğunuzda otururken, dünya ile beraber dönüyor, Güneş'in etrafında dolanıyor, Güneş sistemi ile birlikte galaksi içinde yol alıyor, galaksideki diğer milyarlarca yıldızla birlikte uzayın uçsuz bucaksız karanlıklarına doğru gidiyorsunuz

Dünyanın ekvatorundaki bir noktanın dönüş hızı saniyede 467 metredir yani bu noktada koltuğunda oturan biri zaten bu hızla hareket etmektedir Dünyamız Güneş'in etrafında daireye yakın eliptik bir yörüngede dönerken hızı saniyede 30 kilometredir

Güneş sistemimiz Samanyolu galaksisinde merkezden 25 bin ışık yılı uzaklığında, ortalarda bir yerdedir Sistemimiz bu merkez etrafında, galaksideki diğer yıldızlarla birlikte saniyede 220 kilometre hızla döner Her bir turunu 240 milyon yılda tamamlar

Genişleyen evren teorisine göre galaksilerin hareketleri 'hız' terimi ile ifade edilemez ama yine de Samanyolu galaksisinin Aslan burcundaki takım yıldızlara doğru saniyede 600 kilometre hızla hareket ettiği varsayılıyor

Bütün bu hızlar sabit bir noktaya göredir Nihai hızı bulmak için bütün bu hızları üst üste koyup toplamak doğru olmaz Hareketler bazen aynı bazen ters yöndedirler Bütün bunlar göz önüne alınıp, vektörel olarak toplanınca, galaksimiz dışındaki sabit bir noktaya göre hareket hızımız saniyede 390 kilometre çıkar

Peki nasıl oluyor da bu kadar büyük bir hızı hissetmiyoruz? Bunun nedeni vücudumuzda anatomik olarak hız ölçen bir organımızın olmamasıdır Bir arabada saatte 90 kilometre sabit bir hızla giderken gözlerinizi kaparsanız, hareket ettiğinizi anlayamazsınız Sert bir virajı hissedersiniz ama çok uzun ve yumuşak bir virajı algılayamazsınız

İnsanların duyu organları hız ve yöne değil, bunlardaki değişimlere hassastırlar Dünya ile birlikte yaptığımız yolculukta hareketlerin hepsi sabit hızdadırlar Yörüngeler düz olmasalar da mesafeler o kadar büyüktürler ki düz kabul edilebilirler

Ses hızı saniyede 331 metre, ışık hızı 300 bin kilometre iken siz pazar günü oturduğunuz koltuğunuzda saniyede yaklaşık 400 kilometre hızla gidiyorsunuz Bu hızla bir yere çarpmadan gidebilmek büyük şans doğrusu

Dünya Aniden Durursa

Biz fark etmiyoruz ama dünya kendi ekseni etrafında epeyce hızlı dönüyor Viraja giren bir arabada hissettiğimiz gibi dairesel bir yol üzerinde dönen bir cisme dışarı doğru bir kuvvet etki eder, onu dışarı fırlatmaya çalışır Bu kuvvete 'merkezkaç kuvveti' deniliyor

Dünyadaki her cismin üzerinde dönüşten dolayı bir merkezkaç kuvveti etkisi vardır Ancak bu merkezkaç kuvveti, yerçekimine göre çok zayıftır Eğer zayıf olmasaydı zaten dönerken atmosferle birlikte uzaya fırlar giderdik

Dünya aniden frene basılmış gibi durursa, güçlü yerçekiminden dolayı uzaya gitmezdik Aksine merkezkaç kuvveti ortadan kalkacağından dünya bizi daha çok çekecek, ağırlığımız daha da artacaktı Bu ağırlık artışının yüzde 5 civarında olacağı sanılıyor

Dünya aniden durursa atmosfer dünyanın dönme hızı ile dönmesine devam ederdi Fren yapmış arabadaki insanlar ve eşyalar gibi, yere, kayalara sabitlenmemiş her şey bu hızla ileri fırlar, büyük depremler olur, denizler karalara karışır, hayat yok olurdu ama hiçbir şey uzaya gitmezdi

Gerçi dünyanın böyle aniden durmasını yaratacak bir kuvvet bilinmiyor ve böyle bir olasılık yok ama ömrü yeterse dünyanın dönüşü ilerde, duruyormuş gibi yavaşlayabilir Dünyanın dönüşü zaten başlangıçtan beri gittikçe yavaşlıyor

Nasıl dünyanın uydusu Ay'ın dönüşü, yerin çekim gücünden dolayı yavaşlamış ve kendi etrafındaki dönüş hızı ile dünya etrafındaki dönüşü eşit hale gelmişse, dünyanın dönüş hızı da Güneş'in çekim gücünden dolayı gittikçe yavaşlayarak aynı hale dönüşebilir

Biz Ay'ın nasıl hep aynı yüzünü görüyorsak, o zaman Güneş'ten bakılınca da dünyanın hep aynı yüzü görülebilir Tabii bu dünyanın dönüşünün tamamen durması demek değildir ama fizik kurallarına göre olması gereken budur

Milyonlarca yıl sürecek bu dönemde, 6 ay gece, 6 ay gündüz olmasına, ortalığın epeyce ısınmasına, atmosferik hava akımlarının yönlerinin değişmesine, manyetik kutupların ve kuvvetin kaybolmasına, biyolojik ritmin alt üst olmasına rağmen, canlı yaşamın buna adapte olacağı muhakkaktır

Ne var ki tüm bunlar oluşmadan önce, 5 milyar yıl sonra Güneş dev bir kızıl yıldıza dönüşeceğinden zaten dünyamız yaşanabilir bir yer olmaktan

Güneşin Enerjisinin Kaynağı

Nükleer enerjinin iki kaynağı vardır Füsyon ve fizyon Füsyon bildiğimiz atom bombasının çalışma prensibidir, yani ağır elementlerin çekirdeklerinin parçalanmasından çıkan muazzam enerji Fizyonda ise, tersine hafif atomlar birleşerek daha ağır atomlar meydana getirirler Ortaya yine çok büyük bir enerji çıkar

Bu hafif atomların birleşmesi çok kolay olmaz Hafif atomların çekirdekleri artı yüklü olduklarından, bir araya geldiklerinde büyük bir itme kuvveti doğar Bu kuvvetlerin etkilerini gidermek için çok yüksek sıcaklıklar gerekir Pratikte bu kadar yüksek bir sıcaklığı, sürekli ve kalıcı bir biçimde sağlamak çok güçtür ama bu şartlar en ideal şekilde Güneş'in merkezinde mevcuttur

Güneşin merkezindeki 15 milyon derece sıcaklıkta olan gaz halindeki madde büyük basınç altındadır Güneşin temel maddesi olan hidrojeni helyuma dönüştüren nükleer tepkime yani fizyon olayı burada oluşur 4 hidrojen çekirdeğinin bir helyum çekirdeği halinde birleşmeleri sonucu son derecede büyük bir enerji miktarı açığa çıkar

Serbest kalan enerji ışınım ve iletim yoluyla Güneş'in merkezinden çevreye doğru ilerler Bu yolculuk yaklaşık 10 milyon yıl sürer Sonunda dış katmanlardan ısı ve ışık şeklinde uzaya yayılırlar Güneş yaşı ve aydınlatma gücü olarak sıradan bir yıldızdır Bütün yıldızlar doğada en çok bulunan, en basit, en hafif atom olan hidrojenin yavaş yavaş başta helyum olmak üzere diğer daha ağır elementlere dönüştüğü birer nükleer potadırlar

Peki nasıl oluyor da, atomlar birleşip, başka bir atom oluşunca bu kadar büyük bir enerji ortaya çıkabiliyor? Bu soru Albert Einstein, o ünlü E=mc2 formülünü geliştirene kadar cevapsız kaldı

Formül son derecede basitti Her madde, çevrenizde görebildiğiniz her şey, enerjinin donmuş bir şeklidir Gerekli ve yeterli şartlar yaratıldığında çok küçük bir maddeden bile büyük miktarda enerji açığa çıkabilir Formülde 'E' enerji, 'm' maddenin kütlesi, 'c' de ışık hızıdır

Örneğin l litre hacmindeki (kütlesi l kilogram) olan bir kap suyu ele alalım Eğer bu suyun tamamını Einstein'ın formülüne göre enerjiye çevirirsek, ortaya çıkan enerji, 100 watt'lık bir milyon ampulü, 30 sene boyunca yakabilecek güçte olacaktır

Güneşin merkezindeki fizyon olayında birleşen atomlar ile ortaya çıkan atomların kütlelerini karşılaştırdığımızda çok az bir kütle eksilmesi görülür İşte bu fark kadar kütle Einstein formülüne göre enerjiye çevrilmektedir Bir litre sudan elde edilen enerji bu kadar olduğuna göre dünyanın 330 bin katı olan Güneş'te, saniyede yakılan 564 ton hidrojenden çıkacak enerjiyi varın siz hesap edin

Gece Neden Karanlık

Cevap çok basit gibi görünüyor Zira güneş batmıştır Bir cismin diğer bir cismi aydınlatabilmesi için ışınlarının ona çarpması ve yansıması gerekir Güneş ışınları boşlukta yayılırken aydınlatacakları bir engele çarpmadıkları için uzay karanlık görünür Eğer dünya atmosferi olmasaydı gündüzleri de gökyüzü karanlık olacak, Güneş beyaz bir top gibi görünürken Güneş ile birlikte yıldızlar da görüneceklerdi

Ancak cevap bu kadar basit değildir Evrende ışık veren sadece Güneş değildir Aynı, hatta çok daha güçlü ışık kaynağı sonsuz sayıda yıldız vardır Tüm bu yıldızlardan gelen toplam ışınımın gökyüzünü aydınlatması, en azından gökte nokta gibi parıldayan yıldızların aralarının aydınlık olması gerekmez mi? Sonsuz sayıdaki galaksilerde ışık saçan sonsuz sayıda yıldız ve sınırsız bir evren varken niçin gökyüzü hala karanlık?

Paradoks, yaygın görüşe aykırı, çelişkili yanlarıyla mantığı hiçe sayar görünen düşünce veya yanlışlığı herkesçe bilinen fakat doğruluğu büyük bir kesinlikle ortaya konulan (tam tersi de olabilir) sonuç olarak tanımlanır

Gökyüzü karanlıktır ama bilimsel tüm verilere göre karanlık olmaması gerekir Bu bilim tarihindeki en büyük paradokslardan biridir Yüzyıllarca insanların kafalarını yoran bu bilimsel açmaz, en açık şekilde 1823 yılında Alman fizikçi Heinrich Olbers tarafından ortaya atılmış olduğundan 'Olbers Paradoksu' diye adlandırılır

Olayı enerji yönünden açıklayanlar, yıldızlar da dahil, bilinen evrenin ortalama yoğunluğunun çok düşük olmasına bağlıyorlar Evrende ortalama madde yoğunluğu olarak bir santimetreküp hacme bir hidrojen atomu düştüğünü, bütün bu kütle tamamen ışık enerjisine dönüşse bile gökyüzünü aydınlatamayacağım gökyüzünün sürekli aydınlık görülebilmesi için evrende bulunandan 10 trilyon kat daha fazla maddenin ışık enerjisine dönüşmesi gerektiğini ileri sürüyorlar

Bu açıklama mantığa uygun gibi geliyor, ama bilimsel kanıtlanabilirliği biraz az Yıldızların çok uzaklarda oldukları, ışınlarının dünyaya gelene kadar uzayda bulunan minik toz parçacıkları tarafından soğuruldukları tezi de doğru değil, çünkü bu durumda yıldızlar sönük görünseler de, toz parçacıklarının parıldayarak gökyüzünü aydınlatmaları gerekiyor

Ünlü paradoksa en tatminkar açıklama, evrenin gittikçe genişlemekte olduğunun ispatından sonra geldi Buna göre genişleyen evrende gittikçe uzaklaşan yıldızların ışınlarının dalga boylan kırmızıya kaymakta, ışığın görülebilir sınırından, görülemeyen kızılötesi kısmına geçmektedirler

Aynı şekilde genişleyen evrende bizden gittikçe uzaklaşan yıldızların uzaklaşma hızları çok yüksek olduğundan, tersi yönde bize doğru gelen ışınlarının hızları göreceli olarak yavaşlamakta, bu nedenle biz onların büyük bir kısmını gökyüzünde göremiyor olabiliriz

Gökyüzünde teorik olarak saptanan sayıda yıldız olmayabilir, olsa da bize görünmeyebilirler Örneğin Güneş'in ortaya çıkışı evrene göre çok yenidir Aynı şekilde sonradan ortaya çıkıp da ışınlan henüz bize ulaşamamış önemli sayıda yıldız olabilir

Aynı görüş Güneş gibi parlayan, yani yakıt yakıp enerji üreten yıldızların belirli ömürleri olduğunu, genç yıldızların ışınları bize ulaşana kadar mevcutların bir kısmı söneceğinden yine pek bir şeyin değişmeyeceğini savunuyor

Doğan yıldızlar, sönen yıldızlar, uzaklaşan yıldızlar Büyük denge değişmiyor Mevcut verilere göre her ne kadar gökyüzünün aydınlık olması gerekiyor ise de, o hep karanlık

Uzayda Sıcaklık

Sıcaklık bir cismin atomik yapısı ile ilgilidir Bir cismin molekülleri çok titreşiyorlarsa o cisim sıcak, az titreşiyorlarsa soğuktur Bu nedenle sıcaklığa sahip olabilen tek şey maddedir Uzay ise yüzde 99,99 vakumdur yani boşluktur, pratikte içinde molekül, atom ve parçacıkların bulunmadıkları kabul edilebilir Dolayısı ile uzayın bir sıcaklığı olamaz

Uzayın sıcaklığı yoktur ama uzayda bulunan cisimlerin sıcaklıkları vardır Evrenin ortaya çıkışını açıklamaya çalışan 'büyük patlama' teorisi doğru ise rastlanabilecek en yüksek sıcaklık o anda olmalı Gittikçe soğuyan evrende yıldızların ve onlara yakın gök cisimlerinin, atomik yapılarına göre belli sıcaklıkları vardır Uzayın en az yoğun olduğu yerlerdeki cisimlerin sıcaklıklarının ise, atomik hareketlerin durduğu sıcaklıktan 3 derece fazla yani eksi 270 derece civarında olduğu tahmin ediliyor

Avrupa Uzay Ajansı'ndan yapılan bir açıklamaya göre ise uzayda dönüp duran Hubble teleskopu uzaydaki şimdiye kadar rastlanan en soğuk bölgenin fotoğrafını çekmiş 5000 ışık yılı uzaklıkta, Centaurus takımyıldızında bulunan bu bölgedeki sıcaklık mutlak sıfır noktasından l derece daha sıcak yani eksi 272 dereceymiş

İnsanların uzayın sıcaklığını merak etmelerinin asıl nedeni uzaya çıkan astronotlardır Onların nasıl bir sıcaklık ile karşılaştıkları, üzerlerindeki giysilerin buna nasıl dayandıkları hep merak konusu olmuştur Astronotların gittikleri en uzak yer Ay'dır Dünyamız atmosferi dışında ve Ay'daki sıcaklık ise Güneş'in ışığına doğrudan maruz kalınıp kalınmadığına bağlıdır

Buralarda güneş ışığını doğrudan alan yerler, suyun kaynama noktasından bile yüksek bir sıcaklığa, 120 dereceye kadar ısınırlar Güneş görmeyen yerlerde ise sıcaklık eksi 156 dereceye kadar düşer Astronotlar kısa bir sürede 280 derecelik bir ısı farkı ile karşılaşabilirler Bu nedenle astronotların giysilerinin ve uzay araçlarının izolasyon tasarımları çok önemlidir

Yeryüzünde üzerimize kat kat giysiler bile giysek, vücut ısısını atmosfere oldukça çabuk veririz Rüzgar bu ısı kaybını daha da hızlandırır Ay'da ve uzayda yürüyen bir astronot ise içi vakum olan bir termosun içinde gibidir Dışarıya ısı kaybı çok az olduğundan ve kendi vücudu sürekli ısı ürettiğinden üşümekten çok sıcaklık hisseder

Ay'ın Gündüz Görülmesi

Ay sadece gece görülebilir diye bir şey yok Gündüzleri de periyoduna bağlı olarak ay da tepemizde, bütün yıldızlar da Ama güneşin atmosferimizde yansıyan ışınları onları görmemize mani oluyor Atmosferimiz olmasaydı gökyüzü gündüzleri de karanlık olacak, güneşle birlikte yıldızları da görebilecektik

Ay dünyamıza çok yakın olduğundan gökyüzünde görüntü olarak yıldızlardan çok büyük görünür Eğer konumuna göre güneşten iyi ışık alabilirse gündüzleri de gökyüzünde rahatlıkla görünebilir Ayın yüzeyi bir asfalt yol yüzeyi gibi yansıtıcıdır Koyu renktedir ama tam siyah da değildir Biz gökyüzünde aya baktığımızda sadece onun güneşten yansıttığı ışığı görüyoruz Güneş kadar ışık saçmıyor ama yine de gökyüzündeki en parlak yıldızdan 100000 kat daha fazla ışık yansıtabiliyor

Gündüz havanın aydınlığı yıldızların parıltısını yok eder Aslında parlak yıldızların olduğu bölgede gökyüzünün parlaklığı da biraz daha farklıdır ama bu farkı pek algılayamayız Ama ayın olduğu bölgede ışık yeterli ise geceki gibi çok parlak olmasa da onu görebiliriz Hatta hava şartlarının olumlu olduğu durumlarda hava aydınlıkken Venüs gezegenini bile görebiliriz

Güneşi büyük bir ampul, ayı da büyük bir ayna olarak düşünebiliriz Bazı durumlarda ampulün ışığını doğrudan görmesek bile, aynanın yansıttığı ışığını görebiliriz Bu, geceleri olan durumdur Güneşi göremeyiz, çünkü dünyamız ondan gelen ışığı bloke etmiştir Ayı, yani aynadan yansıyan ışığını görebiliriz Ampulü de, aynayı da birlikte gördüğümüz durum ise ayın gündüz görünme durumudur

Genellikle 'ayın karanlık yüzü' diye kullanılan deyiş şekli yanlıştır Doğrusunun 'ayın arka yüzü' olması gerekir Ayın dünyamız etrafındaki dönüş süresi ile kendi etrafındaki dönüş süresi hemen hemen aynı olduğundan, biz ayın hep bir yüzünü görürüz ama ay dünya ile güneş arasındayken bize bakan yüzü karanlık, güneşe bakan arka yüzü aydınlıktır

Yıldızların Titremesi

Geceleri gökyüzünde gördüğümüz yıldızların birçoğu bizim güneşimizden de büyüktürler ama o kadar uzaktadırlar ki, ancak birer nokta olarak gözükürler Gezegenlerin yıldızlardan farkları, güneş sistemimiz içinde bizimle beraber güneşin etrafında dönüyor olmalarıdır Bu nedenle çok uzak olan yıldızlar gökyüzünde 'sabit' dururken, gezegenler sürekli yer değiştirirler Bu gezegenler güneşe yakınlık sırası ile Merkür, Venüs, dünyamız Mars, Jüpiter, Satürn, Uranüs, Neptün ve Plüto'dur

Güneş sistemimizde bile mesafeler o kadar büyüktür ki dünyamıza 8 dakikada gelen güneş ışığı, Neptün'e ancak 4 saatte ulaşır Zaten güneş sistemimizde bulunmalarına rağmen Neptün ve Plüto teleskop kullanmadan dünyamızdan görülemezler Güneş Neptün'e o kadar uzaktır ki, bu gezegenden bakıldığında görünümü parlak bir yıldızdan farksızdır Güneş ışıklarının dünyamıza gelmek için 8 dakikada aldığı bu yolu, saatte 1000 kilometre hızla giden modern bir jet uçağı ancak 17 yıl civarında gidebilirdi

Güneş sistemimizin dışındaki mesafeler ise inanılmaz Örneğin, Andromeda galaksisinin ışığı dünyaya 22 milyon yılda ulaşmaktadır Yani biz bu galaksiyi bu kadar yıl evvelki hali ile görüyoruz Şimdi ne yapıyorlar acaba?

Aysız berrak bir gecede gökyüzünde gözle görülebilen yıldız sayısı 7000'dir Küçük bir teleskopla 25 milyon yıldız görülebilir Ama örneğin ABD'deki Mount Palomar gözlem evindeki teleskopla tüm gökyüzü taranabilse 2 milyar yıldız görülebilir Halbuki sadece Samanyolu galaksisinde 100 milyar yıldız olduğu tahmin edilmektedir

Yıldızların göz kırpıyormuş gibi ışıklarının kırpışmasının sebebi, çok uzaktan geliyor olmaları ve atmosferimizdir Yeryüzünde nispeten ılınan hava devamlı olarak yükselme meylindedir Bu durum gece de devam eder Yıldızların zayıf ışıkları bu yükselen hava dalgası içinde kırılırlar Bazen gözümüze tam olarak ulaşamazlar, yani kesik kesik gelirler

Bu evimizdeki sıcak radyatörün veya bir ateşin ya da yazın çok sıcak yolların üzerindeki yükselen havanın arkasındaki şekillerin görüntüsünü dalgalandırmasına benzer Gerçi görülebilir gezegenlerden gelen ışıklar da yükselen hava dalgaları ile kırılır ama onların ışıkları daha güçlü olduklarından gözümüze ulaşmada kesinti olmaz ve göz kırpmazlar

Alıntı Yaparak Cevapla

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?

Eski 09-11-2012   #7
Prof. Dr. Sinsi
Varsayılan

Doğa Ve Evren Nedir? Doğa Ve Evren Hakkında Bilgiler Nelerdir?



Kuyruklu Yıldızlar

Kuyruklu yıldızların diğer gökcisimlerinden farklı ve gizemli şekilleri, aniden ortaya çıkıp bir süre sonra yok olmaları, onların tarih boyunca insanlar tarafından Tanrıların habercileri olarak algılanmalarına yol açmıştır Onların ölüm ve felaket habercileri olduklarına, kuraklık, sel, açlık gibi büyük doğal afetlerin ve salgın hastalıkların hatta her iki dünya savaşının da o sıralarda görülen kuyruklu yıldızlardan kaynaklandığına inanılmıştır

Milattan önce 43 yılında Sezar'ın ölümünden sonra çok parlak bir kuyruklu yıldız görüldü ve onun Roma imparatorunun göğe yükselen ruhu olduğuna inanıldı Böylece kuyruklu yıldızlardan ünlü kişilerin ölüm haberlerini almak gibi bir boş inanç daha yerleşti

Bilim insanları Güneş sistemimizden çok uzakta ama yine Güneş çekimine bağlı olarak bir yörüngede dönen, her birinin kütlesi ve boyutu dünyamızdan çok az olan kirli kar topu şeklinde milyarlarca kuyruklu yıldız olduğuna inanıyorlar

Bu görüşe göre başlangıçta görkemli kuyrukları olmayan bu gök cisimlerinden bazıları sistem içindeki karşılıklı çekim güçleri nedeni ile Güneş'e doğru hareket etmeye başlıyorlar

Güneş'e yaklaştıkça, dış katmanlarında donmuş halde bulunan uçucu gazlar (karbondioksit, su, metan amonyum, vb) hızla buharlaşmaya başlıyor Güneş'e yaklaştıkça cismin etrafını gaz bulutu olarak sarıyorlar

Güneş yüzeyinde devamlı patlamalar olduğundan ve uzaya büyük hızlarla gaz bulutları fırlatıldığından, cisim Güneş'e iyice yaklaştığında bunların etki alanına giriyor ve etrafındaki gaz bulutu Güneş'in tersi yöne doğru savrularak bir kuyruk görünümünü oluşturuyor Bu nedenle kuyruklu yıldızların kuyruklarının yönleri hep Güneş yönünün ters tarafındadır

Kuyruklu yıldızın kuyruğunun parlaklığına Güneş ışınlarının, gaz bulutu ve parçacıklardan yansımaları neden olur Aslında büyüklüklerine bağlı olarak kuyruklu yıldızlar kuyruklarından sürekli madde kaybederler Sonunda gök taşları haline gelen kuyruklu yıldız kalıntıları, dünya yakınından geçerken bize akan yıldız yağmurları olarak görünürler

Eğer dünyamız bir kuyruklu yıldızın kuyruğu içinden geçerse ne olur? Bu, korkulacak bir şey değildir Çünkü kuyruklu yıldızların kuyrukları yoğun değildir ve dünyanın bu kuyruk içinden geçmesi ona hiç bir şekilde etkide bulunmaz Nitekim Halley kuyruklu yıldızı 1910'da geldiğinde, Dünya onun kuyruğunun içinden geçmişti ve bunun yeryüzüne bir zararı olmamıştı

Zamanımızda kuyruklu yıldızların normal gök cisimleri oldukları biliniyor Bunlar çok büyük hacimli kuyruklarından dolayı korkutucu görünen aslında küçük ve hafif cisimlerdir 12 Yüzyılın ortalarından itibaren bilimin bunların yapıları ve ne olduklarını çözmeye başlamasından sonra halkın peşin hükümleri ve korkulan kaybolmaya başlamıştır

Güneş'in Ömrü

Güneş sistemimiz, bizim Güneş adını verdiğimiz tek bir yıldız ve onun etrafında dönen dokuz gezegen, bu gezegenlerin etrafında dönen 60'dan fazla uydu (Ay), yine Güneş'in etrafında dönen gezegen olarak kabul edilemeyecek kadar küçük 5 000 civarında astroit, sayısız göktaşı, toz ve parçalardan oluşur Güneş bu sistemdeki enerjinin de tek güç kaynağıdır

Güneş'e baktığımızda katı bir maddeymiş gibi görürüz ama aslında yanan bir gaz kütlesinden başka bir şey değildir Bilim insanlarına göre Güneş'ten söz ederken yüzey kelimesini kullanmak hatalıdır çünkü Güneş tamamen gazdan oluşmuştur Güneş'in fotoğraflarında görülen keskin köşeler ise gazın yoğunluğunun birdenbire arttığı yerlerdir

Güneş evreni dolduran milyarlarca yıldızdan biridir Üstelik tamamıyla sıradan bir yıldızdır Gezegenimizin de içinde bulunduğu Samanyolu galaksisinde tam 200 milyar güneş bulunuyor Bizim güneşimiz de bunlardan farklı bir oluşum değil

Güneş bize çok yakın (150 milyon kilometre) olduğu için çok büyük ve parlak görünür Güneşten sonra bilinen en yakın yıldızın, bu mesafenin 250 bin katı daha uzakta olduğu düşünülürse, Güneş'e burnumuzun dibinde diyebiliriz

Dünyamızdan bakınca Güneş sabitmiş gibi görünür ama o da kendi ekseni etrafında döner Dönüş yönü dünyanınkine göre terstir Katı bir cisim olmadığından ekvatoru üzerindeki bir nokta 24,5 günde tam dönüş yaparken daha kuzeydeki bir noktası 31 günde yapar Yani kutuplarına gittikçe dönüş hızı yavaşlar

Güneş'in ısı ve ışık olarak yaydığı enerji, merkezinin hemen çevresinde sürüp giden nükleer tepkime (hidrojen bombasında olduğu gibi) yani hidrojen atomlarının helyum atomlarına dönüşürken çıkardığı büyük enerjidir Güneş tarafından saniyede yakılan hidrojen miktarı 564 milyon tondur Bunun yüzde 0,7'si ise doğrudan enerjiye çevrilmekte, ısı ve ışın yayınımına gitmektedir

Yeryüzünde yaşam Güneş ışınlarına bağlı olduğuna göre, Güneş'in insanlar için gerekli olan enerjiyi daha ne kadar zaman sürdürebileceğini bilmek hakkımızdır Güneş'in şu andaki enerji durumunda önümüzdeki 5 milyar yılda önemli bir değişiklik olmayacak, aynı şekilde ısı ve ışık vermeye devam edecektir

Daha sonra genleşmeye başlayacak, sıcaklığı bugünküne göre yüzde 20 artacak dev bir kızıl yıldıza dönüşecektir O zaman yeryüzündeki sıcaklık dayanılmaz bir yüksekliğe ulaşacak, okyanuslar kaynayıp buharlaşacak ve gezegenimiz bizim bildiğimiz türden bir hayatın var olduğu bir yer olmaktan çıkacaktır Ancak 5 milyar yıl hayli uzun bir zaman süresidir, şimdiden telaşa kapılmaya gerek yoktur

Deprem

Deprem Nedir ?

Yerkabuğu içindeki kırılmalar nedeniyle ani olarak ortaya çıkan titreşimlerin dalgalar halinde yayılarak geçtikleri ortamları ve Yeryüzeyi'ni sarsma olayına "deprem" denir Deprem, insanın hareketsiz kabul ettiği ve güvenle ayağını bastığı toprağın da oynayacağını ve üzerinde bulunan tüm yapılarında hasar görüp, can kaybına uğrayacak şekilde yıkılabileceklerini gösteren bir doğa olayıdır

Depremin nasıl oluştuğunu, deprem dalgalarının Yeryuvarı içinde ne şekilde yayıldıklarını, ölçü aletleri ve yöntemlerini, kayıtların değerlendirilmesini ve deprem ile ilgili diğer konuları inceleyen bilim dalına "sismoloji" denir

Deprem Türleri

Depremler, oluş nedenlerine göre degişik türlerde olabilir Depremler genellikle "tektonik" depremler olarak nitelenir ve bu depremler çoğunlukla levhalar sınırlarında oluşurlarYeryüzü'nde olan depremlerin %90'ı bu gruba girer Türkiye'de olan depremler de büyük çoğunlukla tektonik depremlerdir İkinci tip depremler "volkanik" depremlerdir Bunlar volkanların püskürmesi sonucu oluşurlar

Yer'in derinliklerinde, ergimiş maddenin Yeryüzü'ne çıkışı sırasındakifiziksel ve kimyasal olaylar sonucunda oluşan gazların yapmış oldukları patlamalarla, bu tür depremlerin maydana geldiği bilinmektedir Bunlar da yanardağlarla ilgili olduklarından yereldirler ve önemli zarara neden olmazlar Japonya ve İtalya'da oluşan depremlerin bir kısmı bu gruba girmektedir Türkiye'de aktif yanardağ olmadığı için bu tip depremler olmamaktadır

Bir başka tip deprem de "çöküntü" depremlerdir Bunlar yeraltındaki boşlukların (mağara), kömür ocaklarında galerilerin, tuz ve jipsli arazilerde erime sonucu oluşan boşlukları tavan blokunun çökmesi ile oluşurlar Hissedilme alanları yerel olup, enerjileri azdır, fazla zarar getirmezler

Büyük heyelanlar ve gökten düşen meteorların da küçük sarsıntılara neden olduğu bilinmektedir Odağı deniz dibinde olan "derin deniz depremleri" nden sonra, denizlerde, kıyılara kadar oluşan ve bazen kıyılarda büyük hasarlara neden olan dalgalar oluşur ki bunlara "Tsunami" denir Deniz depremlerinin çok görüldüğü Japonya'da, Tsunami'den 1896 yılında 30000 kişi ölmüştür

Depremle İlgili Sıkça Sorulan Sorular

Dünyada kaydedilen en büyük deprem hangisidir?

1900'den bu yana kaydedilen en büyük deprem, 22 Mayıs 1960'ta Şili'de olmuştur (magnitude 95 Mw)

Yeryüzü'nde en az sallanan kıta hangisidir?

Depremi en az olan kıta Antartika'dır

Magnitüd ve şiddet arasındaki fark nedir?

Magnitüd, depremin kaynağında açığa çıkan enerjinin bir ölçüsü; şiddet ise depremin yapılar ve insanlar üzerindeki etkilerinin bir ölçüsüdür

Depremin Magnitüdü Nedir?

Depremin Magnitüdü, belli bir zaman diliminde kaydedilen sismogram üzerindeki, deprem dalgalarının genliğinin logaritması olarak tanımlanır

Artçı deprem (Aftershock) nedir?

Ana depremi izleyen daha küçük sarsıntılar dizisidir

Artçı depremler (Aftershocklar) ne kadar süre ile devam eder?

Belli bir süresi yoktur, 1 ay da olabilir 2 yıl da sürebilir

Depremin şiddeti nedir?

Depremin yer yüzeyindeki etkileri depremin şiddeti olarak tanımlanır Şiddetin ölçüsü, insanların deprem sırasında uykudan uyanmaları, mobilyaların hareket etmesi, bacaların yıkılması ve toplam hasar gibi çeşitli kıstaslar gözönüe alınarak yapılır Şiddeti tanımlamak için birçok ölçek geliştirilmiştir Bunlardan en yaygın olarak kullanılanı "Değiştirilmiş Mercalli Şiddet Ölçeği" dir (Modified Mercalli (MM) Intensity Scale) Bu ölçek, Romen rakamları ile belirlenen 12 düzeyden oluşur Hiçbir matematiksel temeli olmayıp bütünü ile gözlemsel bilgilere dayanır

Depremler önceden belirlenebilir mi?

Varolan koşullarda depremin önceden belirlenmesi olanaksızdır

Fay nedir?

Yerkabuğu'nu oluşturan kayaçların, bir yüzey boyunca kırılması ve oluşan iki parçanın birbirine göre göreceli olarak yer değiştirmesidir

Kuzey Anadolu Fay Hattı nedir?

Doğuda Karlıova ile batıda Mudurnu Vadisi arasında doğu-batı doğrultusunda bir yay gibi uzanır Dünya'nın en aktif ve en önemli kırık hatları arasında yeralan Kuzey Anadolu Fay Zonu'nun uzunluğu yaklaşık 1200 km'dir; genişliği ise 100 m ile 10 km arasında değişir

Deprem nerelerde oluşur?

Deprem, herhangi bir yerde ve herhangi bir zamanda oluşabilir Genel olarak depremlerin kabuğu oluşturan levhaların sınırlarında oluştuğu söylenebilir Dünya'nın çeşitli yerlerinde benzer nitelikte depremlerin tekrarlandığı gözlenmiştir ve bunlar hep levha sınırlarıdır Depremlerin yoğun olarak gözlendiği bölgeler, Yeryüzü'nde üç ana kuşak oluşturur

1 Kuşak (Pasifik Deprem Kuşağı): Şili'den kuzeye doğru Güney Amerika Kıyıları, Orta Amerika, Meksika, ABD'nin batı kıyıları ve Alaska'nın güneyindeki Aleutian Adaları, Japonya, Filipinler, Yeni Gine, Güney Pasifik Adaları ve Yeni Zelandayı içine alan en büyük deprem kuşağıdır Yeryüzü'ndeki büyük depremleri %81'i bu kuşak üzerinde gerçekleşir

2 Kuşak (Alpine): Endonezya'dan (Java-Sumatra) başlayıp Himalayalar ve Akdeniz üzerinden Atlantik Okyanusu'na ulaşan kuşaktır Yeryüzü'ndeki büyük depremlerin %17'si bu kuşakta oluşur

3 Kuşak (Atlantik): Bu kuşak Atlantik Okyanusu ortasında yeralan levha sınırı (Atlantik Okyanus Sırtı) boyunca uzanır

Depremin Nedenleri

Dünya'nın iç yapısı konusunda, jeolojik ve jeofizik çalışmalar sonucu elde edilen verilerin desteklediği bir Yeryüzü modeli bulunmaktadır Bu modele göre, Yerküre'nin dış kısmında yaklaşık 70-100 km kalınlığında oluşmuş bir taşküre (Litosfer) vardır Kıtalar ve okyanuslar bu taşkürede yer alır

Litosfer ile çekirdek arasında kalan ve kalınlığı 2900 km olan kuşağa Manto adı verilir Manto'nun altındaki çekirdeğin nikel-demir karışımından oluştuğu kabul edilmektedir Yer'in, yüzeyden derine gidildikçe ısının arttığı bilinmektedir Enine deprem dalgalarının, Yer'in çekirdeğinde yayılamadığı olgusundan giderek, çekirdeğin sıvı bir ortam olması gerektiği sonucuna varılmaktadır

Manto, genelde katı olmakla beraber yüzeyden derine inildikçe, içinde yerel sıvı ortamları bulundurmaktadır Taşküre'nin altında Astenosfer denilen yumuşak Üst Manto bulunmaktadır Burada oluşan kuvvetler, özellikle konveksiyon akımları nedeni ile, taş kabuk parçalanmakta ve birçok "Levha" lara bölünmektedir

Üst Manto'da oluşan konveksiyon akımları, radyoaktivite nedeni ile oluşan yüksek ısıya bağlanmaktadır Konveksiyon akımları yukarılara yükseldikçe Taşküre'de gerilmelere ve daha sonra da zayıf zonların kırılmasıyla, levhaların oluşmasına neden olmaktadır Halen 10 kadar büyük levha ve çok sayıda küçük levhalar vardır Bu levhalar üzerinde duran kıtalarla birlikte, Astenosfer üzerinde sal gibi yüzmekte olup, birbirlerine göre insanların hissedemeyeceği bir hızla hareket etmektedirler

Konveksiyon akımlarının yükseldiği yerlerde, levhalar birbirlerinden uzaklaşmakta ve buradan çıkan sıcak magma da okyanus ortası sırtlarını oluşturmaktadır Levhaların birbirlerine değdikleri bölgelerde sürtünmeler ve sıkışmalar olmakta, sürtünen levhalardan biri aşağıya Manto'ya batmakta ve eriyerek yitme zonlarını oluşturmaktadır Konveksiyon akımlarının neden olduğu bu ardışıklı olay, Taşküre'nin altında devam edip gitmektedir

İşte Yerkabuğu'nu oluşturan levhaların birbirine sürtündükleri, birbirlerini sıkıştırdıkları, birbirlerinin üstüne çıktıkları ya da altına girdikleri bu levhaların sınırları Dünya'da depremlerin oldukları yerler olarak karşımıza çıkmaktadır Dünya'da olan depremlerin büyük çoğunluğu bu levhaların birbirlerini zorladıkları levha sınırlarında, dar kuşaklar üzerinde olusmaktadır

Birbirlerini iten ya da diğerinin altına giren iki levha arasında, harekete engel olan bir sürtünme kuvveti vardır Bir levhanın hareket edebilmesi için, bu sürtünme kuvvetinin giderilmesi gerekir İtilmekte olan bir levha ile bir diğer levha arasında sürtünme kuvveti aşıldığı zaman bir hareket oluşur Bu hareket, çok kısa bir zaman biriminde gerçekleşir ve şok niteliğindedir Sonunda çok uzaklara kadar yayılabilen deprem (sarsıntı) dalgaları ortaya çıkar

Bu dalgalar geçtiği ortamları sarsarak ve depremin oluş yönünden uzaklaştıkça enerjisi azalarak yayılır Bu sırada Yeryüzü'nde, bazen gözle görülebilen, kilometrelerce uzanabilen ve fay adı verilen arazi kırıkları oluşabilir Bu kırıklar bazen Yeryüzü'nde gözlenemez, yüzey tabakaları ile gizlenmiş olabilir Bazen de eski bir depremden oluşmuş ve Yeryüzü'ne kadar çıkmış, ancak zamanla örtülmüş bir fay yeniden oynayabilir

Depremlerinin oluşumunun bu sekilde ve "Elastik Geri Sekme Kuramı" adı altında anlatımı, 1911 yılında, Amerikalı Reid tarafından yapılmıştır ve laboratuvarlarda da denenerek ispatlanmıştır Bu kurama göre, herhangi bir noktada, zamana bağımlı olarak, yavaş yavaş oluşan birim deformasyon birikiminin elastik olarak depoladığı enerji, kritik bir değere eriştiğinde, fay düzlemi boyunca varolan sürtünme kuvvetini yenerek, fay çizgisinin her iki tarafındaki kayaç bloklarının birbirine göreli hareketlerini oluşturmaktadır

Bu olay ani yer değiştirme hareketidir Bu ani yer değiştirmeler ise bir noktada biriken birim deformasyon enerjisinin, açığa çıkması, boşalması, diğer bir deyişle mekanik enerjiye dönüşmesi ile ve sonuç olarak yer katmanlarının kırılma ve yırtılma hareketi ile olmaktadır

Aslında kayaların, önceden bir birim yer değiştirme birikimine uğramadan kırılmaları olanaksızdır Bu birim yer değiştirme hareketlerini, hareketsiz görülen Yerkabuğu'nda, üst mantoda oluşan konveksiyon akımları oluşturmakta, kayalar belirli bir deformasyona kadar dayanıklılık gösterebilmekte ve sonrada kırılmaktadır

İşte bu kırılmalar sonucu depremler oluşmaktadır Bu olaydan sonra da kayalardan uzak zamandan beri birikmiş olan gerilmelerin ve enerjinin bir kısmı ya da tamamı giderilmiş olmaktadır Çoğunlukla bu deprem olayı esnasında oluşan faylarda, elastik geri sekmeler (atım), fayın her iki tarafında ve ters yönde oluşmaktadırlar

Faylar, genellikle hareket yönlerine göre isimlendirilirler Daha çok yatay hareket sonucu meydana gelen faylara "Doğrultu Atımlı Fay" denir Fayın oluşturduğu iki ayrı blokun birbirlerine göreli olarak sağa veya sola hareketlerinden de bahsedilebilir ki bunlar sağ veya sol yönlü doğrultulu atımlı faya bir örnektir

Düşey hareketlerle meydana gelen faylara da "Eğim Atımlı Fay" denir Fayların çoğunda hem yatay, hem de düşey hareket bulunabilir

Deprem Kılavuzu

Depremden Önce

Bir deprem meydana geldiğinde, eğer bina içindeyseniz, sallanma ve ani bir gürültü duyarsınız Sonradan, hızlı, şiddetli ardarda çalkantılı sarsıntılar meydana gelir Bu, çok korkutucu olacaktır Bu sarsıntılar birkaç saniye veya birkaç dakika sürebilir Deprem ağzını açıp sizi yutmayacaktır; fakat kırılan bir cam, düşen nesneler, çevreye yuvarlanan ya da fırlayan ağır şeyler sizi hayati tehlikeler yaratacak biçimde yaralayabilir Deprem sonrası şoklara kendinizi hazır tutun

Depremi önleyemezsiniz! Fakat;

Yaralanmayı önlemeye,

Evinizdeki hasarı minimuma indirmeye,

Depremden sonra en az 72 saat yardımsız biçimde enkaz altında hayatta kalabilmeye hazırlıklı olmalısınız

Önceden hazırlıklı olmak yaşamınızı kurtarabilir Olası bir deprem her an yaşadığınız bölgeyi vurabilir; bunun için Acil Durum Planınızı yapmaya başlayın Aileniz deprem sırasında ve sonrasında ne yapılması gerektiği konusunda hazırlıklı olmalıdır İhtiyaçlarınızın listesini çıkarın İşbölümü yapın Planınızı yazın ve bunun tatbikatını yapın Eğer aileniz yoksa, kişişel planınızı komşularınız ve arkadaşlarınızla yapın

Evinizdeki güvenli ve tehlikeli bölümleri bilin!

Güvenli yerler:

ağır masa ve sıraların altı,
koridor içleri,
odaların ve kemerlerinin köşeleri
Tehlikeli yerler:

cam ve ayna çevresi,
düşebilecek herhangi bir nesnenin altı,
mutfak: fırın, buzdolabı veya mutfak dolapları tehlike yaratabilir,
kapı araları: çünkü kapı size çarpabilir
Ailenizi yangın söndürme cihazı kullanma hususunda eğitin!

Kalp masajı öğretilen bir ilk yardım kursuna kaydolun!

Şimdiden sigortacınızdan randevu alıp, deprem sigortası hakkında görüşün Mal beyanınızı yapın Bu, deprem sonrası kaybınızı temin edecektir

Evinizi boşaltmanın planını yapın ve bunun alıştırmasını yapın!

Çocuklarınıza deprem sırasında evde ya da okulda bulundukları zaman ne yapmaları hakkında bilgi verin Okullarının deprem planı olup olmadığını soruşturun ve izleyin

Ailenizle dışarıda bulundukları süre içerisinde iletişim kurabilmeyi düzene koyun Aile üyelerinin herbirinin iletişim için gerekli olabilecek telefon numarası ve adresini yanında bulundurması gerekmektedir Eve ulaşılamadığı durumlar için alternatif bir randevu planlayın

Aileniz bireylerine acil durum yetkililerine güvenmeleri gerektiğini öğretin!

Radyo ve televizyon yayınları sizi bilgilendirecektir Acil telefon numaralarının telefon rehberinin iç kapağında ya da telefonun üzerinde bulundurulmasını sağlayın Bu numaraları, ancak, çok acil durumlarda kullanın Unutmayın, telefonunuz deprem sonrası çalışmayabilir veya çevir sesini düşürmek zaman alabilir

Aile üyelerinizin gaz, elektrik ve suyu kapamayı bilip bilmediklerinden emin olun (Gazı, kaçak ve yangın olmadığı durumlarda kapamayın Gaz kesildiği taktirde tekrar açmayı denemeyin; bu işlem uzman bir teknisyence yapılmalıdır) Planınız acil durum için gerekli malzeme ve gereçleri ihtiva eden bir liste içermelidir Acil durum planlarınızı komşularınızla paylaşın

Alıntı Yaparak Cevapla
 
Üye olmanıza kesinlikle gerek yok !

Konuya yorum yazmak için sadece buraya tıklayınız.

Bu sitede 1 günde 10.000 kişiye sesinizi duyurma fırsatınız var.

IP adresleri kayıt altında tutulmaktadır. Aşağılama, hakaret, küfür vb. kötü içerikli mesaj yazan şahıslar IP adreslerinden tespit edilerek haklarında suç duyurusunda bulunulabilir.

« Önceki Konu   |   Sonraki Konu »


forumsinsi.com
Powered by vBulletin®
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
ForumSinsi.com hakkında yapılacak tüm şikayetlerde ilgili adresimizle iletişime geçilmesi halinde kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde gereken işlemler yapılacaktır. İletişime geçmek için buraya tıklayınız.