![]() |
Pascal Ücgeni-Binom |
![]() |
![]() |
#1 |
Prof. Dr. Sinsi
|
![]() Pascal Ücgeni-BinomBir kümenin alt kümelerinin sayısını gösteren “PASCAL” üçgenini oluşturalım ![]() Kümenin Eleman Sayısı: s(A)=0 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() s(A)=1 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() s(A)=2 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() s(A)=3 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() s(A)=4 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() s(A)=5 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Üçgenin tepesinde 1 yazdık ![]() ![]() ![]() ![]() Örneğin; s(A)=4 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() s(A)=5 ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Bu tablodaki sayıların ne ifade ettiğini gösterelim ![]() A={a,b,c} kümesi 3 elemanlı olup bu kümenin alt kümelerini yazalım ![]() 0 elemanlı alt kümesi{} 1 tane 1 elemanlı alt kümeleri{a},{b},{c} 3 tane 2 elemanlı alt kümeleri{a,b},{a,c},{b,c}3 tane 3 elemanlı alt kümeleri{a,b,c} 1 tane s(A)=3 olan satırdaki sayılar olduğunu görünüz ![]() ![]() ![]() ![]() ![]() ![]() Pascal Üçgenini biraz daha büyüterek aşağıdaki örnekleri inceleyelim ![]() *6 elemanlı bir kümenin 2 elemanlı 15 tane alt kümesi vardır ![]() satırındaki üçüncü sayı) *5 elemanlı bir kümenin 2 elemanlı en az 3 elemanlı kaç tane alt kümesi olduğunu araştıralım: 3 elemanlı ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() 4 elemanlı ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() *7 elemanlı bir kümenin en az 2 elemanlı kaç alt kümesi olduğunu araştıralım: 1 ![]() 2 ![]() Binom Açılımı: (a+b)n nin açılımında Pascal Üçgenindeki sayılar terimdeki katsayıları olur ![]() ![]() (a+b)5=? Katsayılar 1 5 10 10 5 1 A nın kuvvetleri a5 a4 a3 a2 a 1 B nin kuvvetleri 1 b b2 b3 b4 b6 (a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5 *(5x-3y)2=? Katsayılar 1 2 1 5x’in kuvvetleri 25x2 5x 1 -3y’nin kuvvetleri 1 -3y 9y2 (5x-3y)2= 25x2 -2 ![]() ![]() Yukarda ki örnekten de görülebileceği gibi negatif terimin tek kuvvetlerinin olduğu terimlerin işareti negatiftir |
![]() |
![]() |
Konu Araçları | Bu Konuda Ara |
Görünüm Modları |
|