Aritmetik Ve Geometrik Diziler, Seriler Matematik Dersi İçerik Konu Ders |
|
|
#1 |
|
Prof. Dr. Sinsi
|
Aritmetik Ve Geometrik Diziler, Seriler Matematik Dersi İçerik Konu DersARİTMETİK ve GEOMETRİK DİZİLER, SERİLER 1 Aritmetik DiziA TANIMArdışık iki terimin arasındaki fark, aynı sabit bir sayı olan dizilere aritmetik dizi denir Diğer bir ifadeyle n N+ için, an+1 – an = d olacak şekilde bir d R varsa (an) dizisine aritmetik dizi, d sayısına da ortak fark denir![]() ÖRNEK (an) = (n+10)/5 dizisinin aritmetik dizi olduğunu gösteriniz Ortak farkını bulunuz![]() an+1 – an = (n+1+10)/5 – (n+10)/5 = 1/5 olduğuna göre (an), ortak farkı d = 1/5 olan bir aritmetik dizidir ![]() B GENEL TERİMAritmetik dizinin ilk terimi a1 ve ortak farkı d = 1 olan bir aritmetik dizidir ![]() 5 a1 = a1 a2 = a1 + d a3 = a2 + d = a1 + 2d a4 = a3 + d = a1 + 3d ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() an = an – 1 + d = a1 + (n – 1)d dir ![]() Demek ki, aritmetik dizinin genel terimi: an = a1 + (n – 1)d dir ![]() ÖRNEK İlk terimi 8 ve ortak farkı 2 olan aritmetik dizinin genel terimi nedir? a1 = 8 ve d = 2 an = a1 + (n – 1) d an = 8 + (n – 1) 2 an = 2n + 6’dır ![]() C ARİTMETİK DİZİNİN ÖZELLİKLERİAritmetik dizide ap ve ak biliniyorsa, ortak fark : d = ap – ak dir ![]() p - k ÖRNEK 39 terimi 19 ve 45 terimi 22 olan aritmetik dizinin ortak farkı kaçtır?a39 = 19 ve a45 = 22 d = (a45 – a39)/(45 – 39) d = (22 – 19)/6 d = ½’ dir ![]() a ve b gibi iki sayı arasına n tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı : d = b – a dır ![]() n + 1 ÖRNEK - 8 ve 28 sayıları arasına 8 tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı kaçtır? a = -8, b = 28 ve n = 8 olduğuna göre, d = (b – a)/(n+1) = [28 – (-8)]/(8+1) = 36/9 = 4 Aritmetik dizinin ilk terimi n teriminin toplamı Sn ile gösterilirse, Sn = n [2a1 + (n – 1)d] ya da 2 Sn = n (a1 + an) olur ![]() 2 Bir aritmetik dizide, her terim kendisinden eşit uzaklıkta iki terimin kendisinden eşit uzaklıktaki iki terimin aritmetik ortalamasına eşittir Diğer bir ifadeyle k<p iken,ap = ap – k +ap + k dır ![]() 2 ÖRNEK 19 terimi 42 ve 33 terimi 88 olan aritmetik dizinin 26 terimi kaçtır?a19 = 42 ve a33 = 88 ve (19 + 33)/2 = 26 olduğu için, a26 = (a19+a33)/2 a26 = (42+88)/2 a26 = 65’tir ![]() GEOMETRİK DİZİ A TANIMArdışık iki terimin oranı aynı sabit bir sayı olan dizilere geometrik dizi denir Diğer bir ifadeyle n N+ için, an + 1 = r olacak şekilde bir r R varsa (an) dizisine geometrik dizi, r sayısına ortak an çarpan veya ortak oran denir ![]() ÖRNEK (an) = (2n+5) dizisinin geometrik dizi olduğunu gösteriniz Dizinin ortak çarpanını bulunuz![]() (an+1)/an = (2n+1+5)/2n+5 = 2olduğuna göre (an), ortak çarpanı r = 2 olan geometrik bir dizidir ![]() B GENEL TERİMDizinin ilk terimi a1 ve ortak çarpanı r olsun Bu durumda,a1 = a1 a2 = r a1a3 = r a2 = r2 a1a4 = r a3 = r3 a1Demek ki, geometrik dizinin genel terimi: an = rn – 1 a1 veya an = rn – p ap dir![]() ÖRNEK İlk terimi 14 ve ortak çarpanı ½ olan geometrik dizinin genel terimi nedir? a1 = 4 ve r = ½ an = rn – 1 a1an = (1/2)n – 1 4an = 23 - n C GEOMETRİK DİZİNİN ÖZELLİKLERİGeometrik dizide ap ve ak biliniyorsa, ortak çarpan : rp – k = ap eşitliğinde bulunur ![]() ak ÖRNEK 2 terimi 3/5 ve 5 terimi 75 olan geometrik dizinin ortak çarpanı nedir?a2 = 3/5 ve a5 = 75 r5 – 2 = a5/a2 r3 = 75/3/5 r3 = 125 r = 5 tir ![]() Geometrik dizinin ilk n teriminin toplamı Sn ile gösterilirse Sn = a1 1 – rn olur![]() 1 – r ÖRNEK İlk terimi 6 ve ilk 3 teriminin toplamı 42 olan geometrik dizinin 3 terimi nedir?a1 = 6 ve S3 = 42 ise S3 = a1 (1 – r3)/(1 – r)Bir geometrik dizide, her terim kendisinden eşit uzaklıktaki iki terimin geometrik ortalamasına eşittir Diğer bir ifadeyle k < p iken, ap = dır![]() ÖRNEK 3 terimi 3 ve 5 terimi 6 olan geometrik dizinin 7 terimi nedir?a3 = ve a5 = (a3 a7)1/2 6 = (3 a7)1/2 36 = 3 a7 a7 = 12’dir![]() SONUÇ: Sabit dizi, ortak farkı 0 olan aritmetik bir dizidir Sabit dizi, ortak çarpanı 1 olan geometrik bir dizidir Sabit dizi, ortak çarpanı 1 olan geometrik bir dizidir Yani, sabit dizi hem aritmetik hem de geometrik dizidir Kaynakwh: ARİTMETİK ve GEOMETRİK DİZİLER, SERİLERÖRNEK: Bir geometrik dizinin ilk terimi x, ortak çarpanı 6, n terimi y’dir Bu dizinin, ilk n teriminin toplamının x ve y’ye bağlı ifadesi aşağıdakilerden hangisidir?a1 = x, r = 6 ve an = y olduğuna göre, an = a1rn – 1 y = x 6n – 1 6n = 6y/x ![]() ![]() (*)Sn = a1 (1 – rn)/(1 – r) = x (1 – 6n)/(1 – 6) = x (1 – 6y/x)/(-5) = (6y – x)/5 dir![]() SERİLER A TANIM• (an) reel terimli bir dizi olsun ![]() = a1+a2+a3+ ![]() ![]() +an + ![]() ![]() sonsuz toplamına seri denir Kaynakwh: ARİTMETİK ve GEOMETRİK DİZİLER, SERİLER• an’e serinin genel terimi denir ![]() • Serinin ilk n teriminin toplamından oluşan Sn = a1+a2+a3+ ![]() ![]() +an toplamına serinin n kısmi toplamı denir![]() • (Sn) = (S1, ![]() ![]() ,S2,![]() ![]() ,S3,![]() ![]() ,Sn,![]() ![]() ) dizisine kısmi toplamlar dizisi denir![]() • a) (Sn) dizisi yakınsak ise serisi de yakınsaktır ve serinin toplamı = lim Sn’ dir ![]() b) (Sn) dizisi ıraksak ise seriside ıraksaktır ![]() • serisi yakınsak ise lim an = 0’dır Bu ifadenin tersi doğru değildir Yani, lim an = 0 iken serisi yakınsak olmayabilir![]() • lim an ise serisi ıraksaktır ![]() ÖRNEK 2n/5-n serisi veriliyor Serinin ıraksak olduğunu gösteriniz![]() an = 2n/5-n = 2n 5n = 10n dir lim an = lim 10n = dur lim an 0 olduğuna göre seri ıraksaktır![]() B ARİTMETİK VE GEOMETRİK SERİLER1 Aritmetik Seriler(an) dizisi bir aritmetik dizi ise serisine aritmetik seri denir Aritmetik serinin kısmi toplamı Sn = n (a1+a2)’dir Aritmetik seri ıraksaktır![]() 2 ÖRNEK (n – 10)/20 serisi veriliyor Serinin, aritmetik seri olduğunu gösteriniz Serinin kısmi toplamını bulunuz Serinin ıraksak olduğunu gösteriniz![]() n N+ için d = an +1 – an =(n+1-10)/20 – (n-10)/20 = 1/20 olduğu için seri aritmetik seridir ![]() a1 = -9/20 ve an = (n – 10)/20 olduğuna göre, Sn =n/2(a1+an) = n/2[-9/20 + (n –10)/20] =n(n – 19)/40 = olduğuna göre (Sn) kısmi toplamlar dizisi ıraksaktır (Sn) kısmi toplamlar dizisi ıraksak olduğu için sorulan seri ıraksaktır![]() 2 Geometrik Seriler(an) dizisi bir geometrik dizi ise serisine geometrik seri denir Geometrik serinin kısmi toplamı Sn = a1 1-rn’dir![]() 1-r a) |r| < 1 ise seri yakınsaktır ve serinin toplamı: = a1’dir ![]() 1-r b) |r| ise seri ıraksaktır ![]() ÖRNEK 31-n serisi veriliyor ![]() Serinin, geometrik seri olduğunu gösteriniz, serinin kısmi toplamını bulunuz, serinin yakınsak olduğunu gösteriniz, serinin toplamını bulunuz ![]() n N+ için, r = (an+1)/an = 31-(n+1)/31-n = 1/3 olduğu için seri geometrik seridir ![]() a1 = 1 ve r = 1/3 olduğuna göre, Sn = 1 [1 – (1/3)n]/(1 – 1/3) = 3/2[1 – (1/3)n] dir![]() r = 1/3 olduğuna göre |r| = |1/3| = 1/3 < 1 dir Bunu için seri yakınsaktır![]() Seri yakınsak olduğuna göre toplamı 31 – n = a1/(1 – r) = 1/(1 – 1/3) = 3/2 dir ![]() 6) DİZİLER VE SERİLER 6 1 Reel sayı dizileria) Sonlu dizi b) Sabit dizi c) Eşit diziler d) Diziler arasında işlemler e) Monoton diziler f) Alt dizi 6 2 Dizilerin yakınsaklığı ve ıraksaklığıa Bir noktanın komşuluğub Yakınsak ve ıraksak dizilerc Sınırlı dizilerd Dizilerde limite Bir dizinin alt ve üst limiti1 Sınırlı Dizilerin Temel Özellikleri2 Aritmetik ve Geometrik Diziler3 Serilera Kısmi toplam , kısmi toplamlar dizisib Yakınsak ve ıraksak serilerc Aritmetik serid Geometrik seri |
|
| Konu Araçları | Bu Konuda Ara |
| Görünüm Modları | |
|
|