Rasyonel Sayılar İn Tarihçesi |
|
|
#1 |
|
Prof. Dr. Sinsi
|
Rasyonel Sayılar İn TarihçesiRasyonel sayılar ın tarihçesi Tarihte matematiksel düşünce ölçme, borç, vergi, astronomi hesapları gibi pratik problemlere çözüm tekniklerinin geliştirilmesiyle başladı Eski Yunan’da başlayan felsefeyle etkileşimi, matematiği genelleme ve soyut-lamalara ***ürdü Öte yandan bu genelleme ve soyutlamalar matematiğin kullanım alanını genişletti Matematik’te genelleme ve soyutlamalara çok rastlanır Birbirinden farklı görünen çok sayıda probleme tek bir prob-lemin özel durumları olarak bakılabilir Örneğin üçgenlerin alanlarını tek tek hesaplamaya çalışmaktansa problemi genelleyip üçgenin alan formülünü türet-mek hem daha kolaydır,hem de böylece daha geniş bir uygulama alanı ortaya çıkar ![]() Günümüzde matematik kendi dinamiğinin yanı sıra başka bilimlerle arasındaki etkileşim nedeniyle de çok hızlı bir gelişme göstermektedir Bu gelişmenin sonucu matematik içinde çok sayıda dal ortaya çıkmıştır (Analiz,aritmetik;cebir;geometri;istatistik;kümel e r kuramı;olasılık kuramı; sayı-sal çözümleme;trigonometri) İlkel dinler incelendiğinde sayma gibi basit gö-rünen bir işlemin oluşmasında toplumlar ancak ilk birkaç sayıya isim koya-bilmişler,gerisini “çok “olarak nitelemişlerdir Matematiksel düşüncenin ilk adı-mı olan rakamlar ve sayma işlemi ancak ekonomisi düzenli,gelişmiş yerleşik toplumlarda yazı ile birlikte ortaya çıkmıştır![]() Antik Çağda ilk önemli matematik merkezi olarak ,İÖ 2000’lerden sonra Babil görülür Babilliler ekonomik yapılarının gerektiği denklem çözme,kök bulma,alan ve hacim hesaplama gibi tekniklerin yanı sıra astronomiye olan yakın ilgileri nedeniyle Trigonometriyi geliştirdiler Babil’in matematiğe belki en büyük katkısı 60 tabanlı sayı sistemidir Sıfır simgesinin de katılmasıyla onlu sisteme çok benzeyen 60 tabanlı sayı sistemi bugün bile açı ve zaman ölçümünde kullanılmaktadır![]() Eski Mısır’dan günümüze ulaşan iki önemli matematik yapıtı Golenişev papirüsü(İÖ y 1900) ile Rhind papirüsüdür ( İÖ 1700’den önce) Bunlar çağlarının aritmetik ders kitapları olarak nitelenebilir Gerek Mısır’da gerekse daha sonra Roma uygarlığında matematik,pratik bir araç olmaktan öteye gitmemiştir Yunan matematiği İÖ 7-6 yüzyıllarda Mezopotamya ve Mısır’dan gelen bilgilerin derlenmesiyle oluştu,ama kendi ürünlerini İÖ 5 yüzyılın ikinci yarısından sonra vermeye başladı Elealı Zenon’un zaman ve uzayın sonsuz sayıda parçaya bölünmesi hakkındaki paradoksları,Demokritos’un atomcu görüşleri,geometrik niceliklerin ölçümünde rasyonel sayıların (tamsayıların birbirlerine oranları)yeterli olmadığını buldular ve irrasyonel sayıların geometrik kuramını geliştirdiler Alan ve hacim hesaplarındaki sonsuz küçük kesitler bugünkü integral kavramının ilk işaretleri olarak görülebilir![]() Kuramsal matematiğin sonsuz kavramı dışında Eski Yunan matematiğin ilgilendiği iki önemli konu konikler ile astronomiden kaynaklanan küresel geometri problemleri oldu İÖ 4 yüzyılın sonunda matematikte erişilen düzey ve yetkinlik daha sonra yazılan Eukleides’in ünlü Stoikheia’sı (Elemanlar)ile simgeler![]() Kuramsal matematik Antik Çağda Arkhimedes ve Apollonios ile doruğa ulaştı Konikler konusunda erişilen bulguların önemi ancak 19 yüzyılda izdüşümsel geometrinin gelişmesiyle anlaşılabildi Arkhimedes ve Apollonios’tan sonra gelişme astronomiden kaynaklanan problemler doğrultusunda oldu Gezegenlerin yörüngelerinin belirlenmesi ,sayısal tablolar,mekanik aygıtların bulunması ve İS 100 dolaylarında Melenos’un küresel trigonometrideki sonuçları Ptolemaios’un İS 2 yüzyılda astronomide ortaya koyduğu bulgulara temel oluşturdu İS 4 Yüzyıldan sonra bilim eski bulguların yeniden gözden geçirilmesi ve öğretilmesine dönüştü Klasikler yeniden yorumlandı,eski kitaplar üzerine yeni tezler yazıldı Zaman içinde bu hep böyle süregidince Bizans dönemine Yunan matematiğinin yalnızca basit bir özeti kaldı![]() Ortaçağda bilim Hindistan’da ve İslam dünyasında yeniden canlandı Bağdat’ta Abbasi halifesi Mansur’un etkisiyle Yunan bilim yapıtlarının sistematik bir biçimde çevrilmesine girişildi Hint astronomisinin de etkisiyle Bağdat ilk İslam astronomi merkezi oldu Matematik ve astronominin bu yeniden canlanışında önemli etkenlerden biri de Bağdat okulundan Harizmi(y 780-y 850)oldu Bu canlanış özellikle trigonometri ve küresel trigonometride Antik Çağdakinin çok üstünde bir gelişme doğurdu İslam matematik ve astronomi geleneği 1400’lere değin aralıksız sürdü![]() İslam biliminin Avrupa’ya yayılması 11 yüzyılda başlar Bu konuda öncülüğü yapanlar 11 yüzyılda ;İngiliz filozof Bath’lı Adelard ve 12 yüzyılda İtalyan matematikçi Leonardo Pisano’dur Bu yüzyıllarda Yunan bilim klasikleri Arapça çevirilerinden bu kez Latinceye çevrildi Bu yapıtlar Rönesans’ın bilim yönünden temelini oluşturdu![]() 16 yüzyılın ortalarında Kopernik’in astronomi,Vesalius’un anatomi alanındaki bulguları eski klasiklerin yanlışlarını ortaya çıkarmıştı Matematikte yeni bir çağı müjdeleyen ilk bulgular İtalya’da del Ferro, Cardano,Tartaglia ve Ferrari’nin üçüncü ve dördüncü derece denklemlere çözüm getirmeleri oldu 16 yüzyılın sonlarında Fransa’da Viéte’nin bilinmeyen büyüklükler için harflerle işlem yapması çok hızlı gelişecek olan simgesel cebirin temelini attı![]() 17 yüzyılda İskoçya’da Napier logaritmayı buldu Cavalieri,Kepler’in sonsuz küçüklerle ilgili yöntemlerini geliştirerek geometriye uyarladı Örneğin,elipsin bu yöntemle hesaplanabildi 1637’de Fransız filozof-matematikçi Descartes büyük buluşu analitik geometriyi ortaya koydu Fermat’nın da katkılarıyla analitik geometri,geometri problemlerini cebirsel problemlere dönüştüren yeni bir araç oldu Matematiği bir yan uğraş olarak sürdüren Fermat’nın sayılar kuramındaki bulguları ve Pascal’la birlikte kurduğu olasılık kuramı ona en büyük amatör matematikçi unvanını kazandırmıştır![]() Newton ve Leibniz’in 17 yüzyılın ikinci yarısında diferansiyel ve integral hesabı bulmaları matematikte çok önemli bir adımı simgeler Newton’un Philosophiae naturalis principia mathematica (1687;Doğa Felsefesinin Matematik İlkeleri)adlı yapıtı da gelmiş geçmiş en büyük bilimsel yapıt olarak kabul edilir B u yapıtında kütleçekimi yasasını da ortaya koymuş olan Newton’un temel amacı doğayı anlamaktı; buna karşılık Leibniz bilgiye ve evrensel niteliklere ulaşan yolu açmak istiyordu Leibniz’in bu amaçla geliştirmeyi tasarladığı simgesel mantık,George Boole tarafından ancak 19 yüzyılın ortalarında ortaya konabildi Ama onun diferansiyel yöntemi 18 Ve 19 Yüzyıl matematiğinin gelişmesine temel oluşturdu![]() 18 yüzyıl matematiğinin en önemli adı Leonhard Euler’dir Değişimler hesabı ve diferansiyel geometrinin kurucuları arasında yer alan Euler,analiz ve sayılar kuramı başta olmak üzere matematiğin hemen her dalına önemli katkılarda bulunmuştur 18 yüzyılın öteki büyük matematikçileri arasında J -L Lagrange,J L R d’Alembert,P -S Laplace ve G Monge anılabilir![]() 19 yüzyılda önemli bir gelişme Eukleidesçi olmayan geometrilerin ortaya konmasıdır Eukleidesçi geometri (*)Stoikheia’da belirlenmiş olan beş aksiyom üzerine kurulmuştu Bir noktadan ,verilen bir doğruya yalnızca bir paralel çizilebileceğini belirleyen beşinci aksiyomu,matematikçiler,yüzyıllar boyunca öteki aksiyomlara dayanarak kanıtlamaya çalışmışlar,ama bunda başarılı olamamışlardı 19 yüzyılın en büyük matematikçilerinden biri de, matematiğin hemen her dalına önemli katkılarda bulunmuş olan C F Gauss’tur 20 yüzyılın matematiğinde etkin bir yol gösterici de Hilbert ‘in 1900’de Paris’te İkinci Uluslararası Matematik Kongresi’nde önerdiği 23 problem olmuştur Güncel birçok soru ve araştırma alanı, kaynağını Hilbert’in bu problemlerinden almaktadır TÜRK – İSLAM BİLGİNLERİNDEN EBU REYHAN MUHAMMED BİN AHMED EL-BİRUNİ’NİN HAYATI |
|
Rasyonel Sayılar İn Tarihçesi |
|
|
#2 |
|
Prof. Dr. Sinsi
|
Rasyonel Sayılar İn Tarihçesi(973-1048 ya da 1051/52) Büyük İslam bilgini Ebu Reyhan Muhammed Bin Ahmed el- Biruni,Batı Harzem’in başkenti Kas’ta (Ket) doğdu Biruni’nin yaşamı üstüne yeterli bilgi yoktur Kendi yazdıklarından,babasını küçük yaşta yi-tirdiğini,annesinin onu odun toplayıp,satarak büyüttüğünü öğreniyoruz Harezm-şahlar soyundan ünlü bir bilginin koruyuculuğu altında saraya giren Biruni as-tronomi ve matematik öğrenimi gördü Harezm sarayında çıkan kargaşalıklar sırasında bir süre İran’da kaldı,daha sonra da Sultan Kâbus bin Vaşmgir’in sara-yına kabul edildi Bu kargaşa döneminde,henüz 28 yaşındayken önemli bir yapıt olan “El-Âsâru’l-Bâkiye(“Geride kalan yüzyıllar”)”’yi tamamlayıp,Sultan Kâ-bus’a sundu Bu yapıtında Âdem’den Nuh Tufanı’na kadarki olaylar dizisini ta-rihsel,toplumsal,dinsel bakımdan ele almış;Türkler’in,Yunanlılar’ın,Araplar’ ın ve İranlılar’ın kullandıkları takvimler konusunda bilgi vermiştir![]() 1003(Ya da 1009) yılında yeniden Harzem’e dönerek,bilginlere büyük ola-naklar sağlayan Sultan Memun bin el-Memun’un sarayında İbni Sina,İbn Miske-veyh,Ebu Nasr gibi bilginlerle çalıştı Bu dönemde kendinden on yaş küçük olan İbni Sina ile ısı ve ışık iletimi,maddenin devinimi konularında verimli tartışma-lar yaptı ve yapıtlarında bu tartışmaları açıkladı Biruni,1017’de Gazneli Mah-mud’un Harezm ülkesini fethetmesinden sonra Gazne kentine yerleşti;gerek Gazneli Mahmud döneminde,gerek Gazneli Mahmud’un oğlu Mesud ve torunu Mevdud dönemlerinde büyük saygınlık görerek ömrünün son yıllarını burada geçirdi![]() Biruni’nin hangi ulustan olduğu kesin olarak bilinmiyorsa da şifalı otlar ve bazı ilaçlar konusunda bilgi veren Kitâbu’s-Saydane’nin (“Eczacılık Kitabı”)ön sözüne yazdığı “Ana dilim yetersiz olduğundan,bilim dili olan Arapça ve edebi-yat dili olan Farsça’yı kullandım ” cümlesinden yola çıkılarak,Türk olduğu ileri sürülmüştür Aynı zamanda bir şair ve düşünür olan bu büyük İslâm bilginin tarih,coğrafya,astronomi,fizik ve kimya dallarında birçok yapıtı vardır![]() Nihâyâti’l-Emâkin(“Mekanların sonları”)adlı yapıtı,coğrafyadan,jeoloji ve jeodeziye(Yeryüzü düzlemini ölçme bilgisi)kadar bir dizi konudaki yazıların toplamından oluşmuştur Sultan Mesud’a sunduğu el-Kanunü’l Mesudi adlı en önemli astronomi yapıtında,Dünya coğrafyası,enlem ve boylam hesapları Dünya çapının ölçümü,Güneş,Ay ve gezgenlerin devinim cetvelleri gibi araştırma ve çalışmalarını toplayan Biruni bilim tarihçilerine göre Kopernik’le başlayan çağ-daş astronominin temellerini atmıştır Batlamyus ve Aristo’nun kuramlarına kar-şı çıkarak,Dünya’nın durağan değil,dönen bir kütle olduğunu kanıtlamaya çalış-mıştır![]() Kitabu’l-Camahir fi Marifeti’l-Cevahir(“Cevherlerin Özellikleri Üstüne”) adlı yapıtında minerallerin ve bazı değerli taşların özelliklerini tanıtmış,23 katı ve 6 sıvı maddenin özgül ağırlıklarını bugünkü değerlerine çok yakın olarak sap-tamıştır Kimi araştırmacılara göre 113,kimi araştırmacılara göre de 180 yapıtı olduğu ileri sürülen Biruni ‘nin ancak 27 yapıtı günümüze kalabilmiştir Bilim ve felsefe alanındaki çalışma ve araştırmalarında büyük ölçüde İslam düşüncesinin etkisi altında kalmış olan Biruni,evrenin “Öncesiz” olmadığını,bir Tanrı’nın var-lığına gereksinimi olduğunu ileri sürmüştür Biruni bu savı ile,evrenin “Öncesiz” olduğu düşüncesini savunan İbni Sina’dan ayrılır Batı’da “Aliboron” adıyla bili-nen Biruni’nin yapıtları birçok Batı diline çevrilmiştir |
|
Rasyonel Sayıların Tarihçesi |
|
|
#3 |
|
Kayıtsız
|
Rasyonel Sayıların Tarihçesiİyi, güzel de ![]() ![]() ![]() Daha kısası yok mu? |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#4 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar In Tarihçesiyaaaa bütün sitelere baktım ama kısa olanı bulamadım |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#5 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar In Tarihçesidaha uzunu yok muydu çok mu aradınız bu ne yaa |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#6 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar In Tarihçesihoş ama çok uzunnnnnnnnnn |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#7 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar In Tarihçesiççççççççççççoooooook uuuuuuuuuuzzzzzuuuuunnnnnnnnnnn gıııı |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#8 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar In TarihçesiÇok uzun bu !! |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#9 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar In TarihçesiRasyonel sayıların belli bir bulucusu yoktur Fakat zaman içinde matematik ve cebir ilmine katkı yapanların ilerletmesi sonucu bugünkü halini almıştır Oranlı sayılar veya rasyonel sayılar, tam sayılar kullanılarak oluşturulan oranlara denk gelen büyüklüklere denir Georg Cantor 1873'te rasyonel sayıların doğal sayılarla birebir eşlenebildiğini, bir başka deyişle rasyonel sayıların sayılabilir sonsuzlukta olduğunu kanıtladı Bu iyi mi arkadaşlar ?? |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#10 |
|
Büşra
|
Cevap : Rasyonel Sayılar In TarihçesiAllah razı olsun emei geçen herkese |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#11 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar In Tarihçesiçok teşekkürler allah razı olsun |
|
Cevap : Rasyonel Sayılar İn Tarihçesi |
|
|
#12 |
|
Kayıtsız
|
Cevap : Rasyonel Sayılar İn Tarihçesidaha kısa lütfen ama |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#13 |
|
Blonger
|
Cevap : Rasyonel Sayılar In TarihçesiELLERİNİZE SAĞLIK |
|
Cevap : Rasyonel Sayılar In Tarihçesi |
|
|
#14 |
|
Blonger
|
Cevap : Rasyonel Sayılar In TarihçesiTarihte matematiksel düşünce ölçme, borç, vergi, astronomi hesapları gibi pratik problemlere çözüm tekniklerinin geliştirilmesiyle başladı Eski Yunan’da başlayan felsefeyle etkileşimi, matematiği genelleme ve soyut-lamalara ***ürdüÖte yandan bu genelleme ve soyutlamalar matematiğin kullanım alanını genişletti Bence en ideali |
|
|
|