Geri Git   ForumSinsi - 2006 Yılından Beri > Eğitim - Öğretim - Dersler - Genel Bilgiler > Eğitim & Öğretim > Matematik / Geometri

Yeni Konu Gönder Yanıtla
 
Konu Araçları
aritmetik, dizi, geometrik, seriler

Aritmetik Dizi , Geometrik Dizi Ve Seriler

Eski 10-29-2012   #1
Prof. Dr. Sinsi
Varsayılan

Aritmetik Dizi , Geometrik Dizi Ve Seriler



Aritmetik Dizi


A TANIM

Ardışık iki terimin arasındaki fark, aynı sabit bir sayı olan dizilere aritmetik dizi denir Diğer bir ifadeyle " n Î N+ için, an+1 – an = d olacak şekilde bir d Î R varsa (an) dizisine aritmetik dizi, d sayısına da ortak fark denir

ÖRNEK

(an) = (n+10)/5 dizisinin aritmetik dizi olduğunu gösteriniz Ortak farkını bulunuz

an+1 – an = (n+1+10)/5 – (n+10)/5 = 1/5 olduğuna göre (an), ortak farkı d = 1/5 olan bir aritmetik dizidir

B GENEL TERİM

Aritmetik dizinin ilk terimi a1 ve ortak farkı d = 1 olan bir aritmetik dizidir

5

a1 = a1

a2 = a1 + d

a3 = a2 + d = a1 + 2d

a4 = a3 + d = a1 + 3d



an = an – 1 + d = a1 + (n – 1)d dir

Demek ki, aritmetik dizinin genel terimi: an = a1 + (n – 1)d dir

ÖRNEK

İlk terimi 8 ve ortak farkı 2 olan aritmetik dizinin genel terimi nedir?

a1 = 8 ve d = 2 an = a1 + (n – 1) d

an = 8 + (n – 1) 2

an = 2n + 6’dır

C ARİTMETİK DİZİNİN ÖZELLİKLERİ

Aritmetik dizide ap ve ak biliniyorsa, ortak fark : d = ap – ak dir

p - k

ÖRNEK

39 terimi 19 ve 45 terimi 22 olan aritmetik dizinin ortak farkı kaçtır?

a39 = 19 ve a45 = 22 d = (a45 – a39)/(45 – 39)

d = (22 – 19)/6

d = ½’ dir

a ve b gibi iki sayı arasına n tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı :

d = b – a dır

n + 1

ÖRNEK

- 8 ve 28 sayıları arasına 8 tane terim yerleştirilerek oluşturulan aritmetik dizinin ortak farkı kaçtır?

a = -8, b = 28 ve n = 8 olduğuna göre, d = (b – a)/(n+1) = [28 – (-]/(8+1) = 36/9 = 4

Aritmetik dizinin ilk terimi n teriminin toplamı Sn ile gösterilirse,

Sn = n [2a1 + (n – 1)d] ya da

2

Sn = n (a1 + an) olur

2

Bir aritmetik dizide, her terim kendisinden eşit uzaklıkta iki terimin kendisinden eşit uzaklıktaki iki terimin aritmetik ortalamasına eşittir Diğer bir ifadeyle k<p iken,

ap = ap – k +ap + k dır

2

ÖRNEK

19 terimi 42 ve 33 terimi 88 olan aritmetik dizinin 26 terimi kaçtır?

a19 = 42 ve a33 = 88 ve (19 + 33)/2 = 26 olduğu için,

a26 = (a19+a33)/2

a26 = (42+8/2

a26 = 65’tir

GEOMETRİK DİZİ

TANIM

Ardışık iki terimin oranı aynı sabit bir sayı olan dizilere geometrik dizi denir Diğer bir ifadeyle

" n Î N+ için, an + 1 = r olacak şekilde bir r Î R varsa (an) dizisine geometrik dizi, r sayısına ortak

an

çarpan veya ortak oran denir

ÖRNEK

(an) = (2n+5) dizisinin geometrik dizi olduğunu gösteriniz Dizinin ortak çarpanını bulunuz

(an+1)/an = (2n+1+5)/2n+5 = 2olduğuna göre (an), ortak çarpanı r = 2 olan geometrik bir dizidir

GENEL TERİM

Dizinin ilk terimi a1 ve ortak çarpanı r olsun Bu durumda,

a1 = a1

a2 = ra1

a3 = ra2 = r2a1

a4 = ra3 = r3a1

Demek ki, geometrik dizinin genel terimi: an = rn – 1a1 veya an = rn – pap dir

ÖRNEK

İlk terimi 14 ve ortak çarpanı ½ olan geometrik dizinin genel terimi nedir?

a1 = 4 ve r = ½ an = rn – 1 a1

an = (1/2)n – 1 4

an = 23 - n

GEOMETRİK DİZİNİN ÖZELLİKLERİ

Geometrik dizide ap ve ak biliniyorsa, ortak çarpan : rp – k = ap eşitliğinde bulunur

ak

ÖRNEK

2 terimi 3/5 ve 5 terimi 75 olan geometrik dizinin ortak çarpanı nedir?

a2 = 3/5 ve a5 = 75 r5 – 2 = a5/a2

r3 = 75/3/5

r3 = 125

r = 5 tir

Geometrik dizinin ilk n teriminin toplamı Sn ile gösterilirse Sn = a11 – rn olur

1 – r

ÖRNEK

İlk terimi 6 ve ilk 3 teriminin toplamı 42 olan geometrik dizinin 3 terimi nedir?

a1 = 6 ve S3 = 42 ise S3 = a1 (1 – r3)/(1 – r)

Bir geometrik dizide, her terim kendisinden eşit uzaklıktaki iki terimin geometrik ortalamasına eşittir Diğer bir ifadeyle k < p iken, ap = dır

ÖRNEK

3 terimi 3 ve 5 terimi 6 olan geometrik dizinin 7 terimi nedir?

a3 = ve a5 = (a3 a7)1/2 6 = (3 a7)1/2 36 = 3 a7 a7 = 12’dir

SONUÇ:

Sabit dizi, ortak farkı 0 olan aritmetik bir dizidir Sabit dizi, ortak çarpanı 1 olan geometrik bir dizidir Sabit dizi, ortak çarpanı 1 olan geometrik bir dizidir Yani, sabit dizi hem aritmetik hem de geometrik dizidir

ÖRNEK:

Bir geometrik dizinin ilk terimi x, ortak çarpanı 6, n terimi y’dir Bu dizinin, ilk n teriminin toplamının x ve y’ye bağlı ifadesi aşağıdakilerden hangisidir?

a1 = x, r = 6 ve an = y olduğuna göre, an = a1rn – 1 y = x6n – 1 6n = 6y/x

Sn = a1(1 – rn)/(1 – r) = x (1 – 6n)/(1 – 6) = x (1 – 6y/x)/(-5) = (6y – x)/5 dir

SERİLER

A TANIM

(an) reel terimli bir dizi olsun

= a1+a2+a3+ +an + sonsuz toplamına seri denir

an’e serinin genel terimi denir

Serinin ilk n teriminin toplamından oluşan Sn = a1+a2+a3+ +an toplamına serinin n kısmi toplamı denir

(Sn) = (S1,,S2,,S3,,Sn,) dizisine kısmi toplamlar dizisi denir

a) (Sn) dizisi yakınsak ise serisi de yakınsaktır ve serinin toplamı = lim Sn’ dir

b) (Sn) dizisi ıraksak ise seriside ıraksaktır

serisi yakınsak ise lim an = 0’dır Bu ifadenin tersi doğru değildirYani, lim an = 0 iken serisi yakınsak olmayabilir

lim an ¹ 0 ise serisi ıraksaktır

ÖRNEK

2n/5-n serisi veriliyor Serinin ıraksak olduğunu gösteriniz

an = 2n/5-n = 2n5n = 10n dir lim an = lim 10n = ¥ dur lim an ¹ 0 olduğuna göre seri ıraksaktır

B ARİTMETİK VE GEOMETRİK SERİLER

Aritmetik Seriler

(an) dizisi bir aritmetik dizi ise serisine aritmetik seri denir Aritmetik serinin kısmi toplamı Sn = n (a1+a2)’dir Aritmetik seri ıraksaktır

2

ÖRNEK

(n – 10)/20 serisi veriliyor Serinin, aritmetik seri olduğunu gösteriniz Serinin kısmi toplamını bulunuz Serinin ıraksak olduğunu gösteriniz

" n Î N+ için d = an +1 – an =(n+1-10)/20 – (n-10)/20 = 1/20 olduğu için seri aritmetik seridir

a1 = -9/20 ve an = (n – 10)/20 olduğuna göre, Sn =n/2(a1+an) = n/2[-9/20 + (n –10)/20]

=n(n – 19)/40 = ¥

olduğuna göre (Sn) kısmi toplamlar dizisi ıraksaktır (Sn) kısmi toplamlar dizisi ıraksak olduğu için sorulan seri ıraksaktır

Geometrik Seriler

(an) dizisi bir geometrik dizi ise serisine geometrik seri denir Geometrik serinin kısmi toplamı Sn = a11-rn’dir

1-r

|r| < 1 ise seri yakınsaktır ve serinin toplamı: = a1’dir

1-r

|r| ³ 1ise seri ıraksaktır

ÖRNEK

31-n serisi veriliyor

Serinin, geometrik seri olduğunu gösteriniz, serinin kısmi toplamını bulunuz, serinin yakınsak olduğunu gösteriniz, serinin toplamını bulunuz

" n Î N+ için, r = (an+1)/an = 31-(n+1)/31-n = 1/3 olduğu için seri geometrik seridir

a1 = 1 ve r = 1/3 olduğuna göre,

Sn = 1 [1 – (1/3)n]/(1 – 1/3) = 3/2[1 – (1/3)n] dir

r = 1/3 olduğuna göre |r| = |1/3| = 1/3 < 1 dir Bunu için seri yakınsaktır

Seri yakınsak olduğuna göre toplamı 31 – n = a1/(1 – r) = 1/(1 – 1/3) = 3/2 dir

Alıntı Yaparak Cevapla
 
Üye olmanıza kesinlikle gerek yok !

Konuya yorum yazmak için sadece buraya tıklayınız.

Bu sitede 1 günde 10.000 kişiye sesinizi duyurma fırsatınız var.

IP adresleri kayıt altında tutulmaktadır. Aşağılama, hakaret, küfür vb. kötü içerikli mesaj yazan şahıslar IP adreslerinden tespit edilerek haklarında suç duyurusunda bulunulabilir.

« Önceki Konu   |   Sonraki Konu »


forumsinsi.com
Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
ForumSinsi.com hakkında yapılacak tüm şikayetlerde ilgili adresimizle iletişime geçilmesi halinde kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde gereken işlemler yapılacaktır. İletişime geçmek için buraya tıklayınız.