10-29-2012
|
#1
|
Prof. Dr. Sinsi
|
Cauchy-Riemann Denklemleri
Cauchy-Riemann denklemleri
Matematiğin bir dalı olan karmaşık analizde Augustin Louis Cauchy ve Bernhard Riemann'a atfen Cauchy-Riemann denklemleri olarak adlandıran denklemler, türevlenebilir bir fonksiyonun açık bir kümede holomorf fonksiyon olması için gerekli ve yeterli şartları sağlayan kısmi diferansiyel denklemlerdir Bu denklemler sistemi ilk defa Jean le Rond d'Alembert'in 1752 yılındaki çalışmasında ortaya çıkmıştır Daha sonra, 1777 yılındaki çalışmasıyla Leonhard Euler bu sistemi analitik fonksiyonlarla ilişkilendirmiştir Cauchy ise bu sistemi 1814'teki çalışmasındaki fonksiyonlar teorisinde kullanmıştır Riemann'ın fonksiyonlar teorisi üzerine olan doktora tezinin tarihi ise 1851'dir
Bir gerçel değerli fonksiyon çifti u(x,y) ve v(x,y) için yazılan Cauchy-Riemann denklemleri aşağıdaki gibidir:
ve
Genelde u ve v çifti, karmaşık değerli bir f(x + iy) = u(x,y) + iv(x,y) fonksiyonunun gerçel ve sanal kısımları olarak alınır u ve v, C 'nin açık bir kümesinde sürekli şekilde türevlenebilir bir fonksiyon olsun O zaman, f=u+iv ancak ve ancak u ve v Cauchy-Riemann denklemlerini ((1a)'yı ve (1b)'yi) sağlarsa, holomorftur
Yorumu ve formülasyonu
Açıkorur gönderimler
Cauchy-Riemann denklemleri çeşitli yollarla genelde tekrar formüle edilirler Birincisi,
(2)
karmaşık formunda yazılabilirler
Bu formda, denklemler yapısal olarak Jakoben matrisinin, ve olacak şekilde,
formunda olmasına karşılık gelir Bu formdaki bir matris bir karmaşık sayının matris temsilidir Geometrik olarak, böyle bir matris her zaman homotetisi olan bir rotasyonun bileşkesidir ve bilhassa açıları korur Sonuç olarak, türevi sıfırdan farklı, Cauchy-Riemann denklemlerini sağlayan bir fonksiyon düzlemdeki eğriler arasındaki açıyı korur Yani, Cauchy-Riemann denklemleri bir fonksiyonun açıkorur gönderim olması için olan koşullardır
Karmaşık eşleniğin bağımsız olması
Denklemler bazen tek bir denklem olarak yazılır:
(3)
Burada, türev operatörü
olarak tanımlanmıştır
Bu formda, Cauch-Riemann denklemleri "f, değişkeninden bağımsızdır" olarak yorumlanabilir
|
|
|