Prof. Dr. Sinsi
|
Mercek Ve Aynalar Hakkında
Işık, havadan, daha yoğun bir ortama geçerse, o ortamın yoğunluğuna bağlı olarak kırılır Ortamın yoğunluğu fazlaysa, kırılma açısı küçük olur; yani ışık daha fazla bükülür Bu bükülme miktarı, kırılma indisi denilen bir sayıyla gösterilir Yoğunluğu fazla olan ortamın kırılma indisi de büyüktür
Aynalarda olduğu gibi, mercekler de ışığın doğrultusunu değiştirmek için kullanılır Bir cisimden gelen ışınlar, mercekten geçtikten sonra, başka bir noktada kesişirler ve sanki oradan çıkıyor gibi olurlar
Yeni noktada bir görüntü oluşur Büyüteçler, iki tarafı da dışbükey olan merceklerdir Bunları kullanarak, Güneş ışınlarını bir noktada toplayabilirsiniz Böylece Güneşin bir görüntüsünü elde edebilirsiniz Aynı şekilde pencerenin görüntüsü de görülebilir
Bir büyüteçle, kolunuzu uzatıp tutarak cisimlere bakın Cisimlerden gelen ışınlar, mercekle gözünüz arasında bir bir yerde birleşir ve ışık bu noktadan yeniden gözünüze gelir Cisimlerin gerçek görüntülerini görürsünüz Fakat bu görüntüler başaşağı durumdadır
Küçük gök dürbünleri, normal dürbünler ve bir çok astronomi dürbününde, cisimlerin gerçek görüntülerini elde etmede dışbükey mercekler kullanılır Bunlara ince kenarlı mercekler adı verilir
Cisimler ince kenarlı merceğe yaklaştıkça, görüntüleri, mercekten daha uzakta oluşur Fakat cisim, merceğe çok yakınsa, gerçek bir görüntü oluşmaz Cisimle aynı tarafta, gerçek olmayan bir görüntü oluşur Küçük bir böceğe, büyeteci yaklaştırarak bakınca, böceğin gerçek olmayan bir görüntüsü görülür
Büyüteçteki merceğin iki yüzü de dışbükey değildir Biri dışbükey diğeri düzdür Bu tip merceğe düzlem-dışbükey mercek denir Bir yüzü dışbükey diğeri çukur da olabilir Bunlar ışınların daha az dağılmasını sağlarlar
Ortası, kenarlarından daha ince olan mercekler, büyüteç olarak kullanılamaz Cisimlerin görüntüleri gerçek değildir ve cisimden daha küçüktür Bunlarla gerçek görüntü elde edilemez Gözlüklerdeki mercekler daha çok bu türdendir
Bir cismin veya görüntüsünün fotoğrafını çekebilirsiniz Fotoğraf makinesinin merceği iki tarafı dışbükey ince kenarlı mercektir Film üzerinde gerçek görüntü oluşturur
İnsan gözündeki mercek de ince kenarlıdır Gözün ağtabaka denilen arka kısmında, gerçek görüntü oluşturur Ağtabakada renkli ışıklar ve görüntüler elektrik sinyallerine dönüşür ve beyine gider
Yapay merceklerin şekli değişemediği halde, göz merceği, yüzeylerini değiştirebilir Eğriliği çok fazlalaşınca, yakındaki cisimleri görür Eğriliği az olunca, uzaktaki cisimleri görür
Fotağraf makinesinin merceğinin belirli bir şekli vardır Farklı uzaklıktaki cisimlerin görüntüsünü, film üzerine düşürebilmek için, mercek hareket ettirilir
Merceklerin ve aynaların da yapım kusurları olabilir Yüzeylerinin eğriliği değişkense, bulanık görüntülerin oluşmasına yol açarlar Bir noktadan gelen ışınlar, bir noktada birleşmez, farklı yerlerde birleşirler Buna küresel sapma adı verilir Bunu önlemek için, merceklerin yüzeyi tam küresel yapılmaz
Renk sapması nedeniyle de bulanık görüntü oluşabilir Çünkü merceğin yapıldığı cam, farklı renkli ışıkları, farklı miktarlarda kırar Bu yüzden cisimlerin görüntüsü bulanık olur Görüntü, renkli şeritler biçiminde görülür Bu sapma, birkaç merceği bir arada kullanarak düzeltilebilir Kullanılan camların kırılma indisleri farklı seçilir
Merceğe gelen ışınların hepsi diğer tarafa geçmez Bir kısmı da geri yansır Bu durum pencere camında görülebilir Bunlar, optik araçlarda istenmeyen yanlış görüntülere yol açabilir Bu yansımayı azaltmak için mercekler, ışığı geçiren, fakat yansıtmayan özel bir kimyasal maddeyle kaplanır
Işık, yoğun bir ortamdan, az yoğun ortama geçerse, yüzeyin normalinden uzaklaşarak kırılır Bu kırılma o kadar fazla olabilir ki , kırılan ışın, yüzeye teğet olur Bu durum kritik açı denilen belli bir geliş açısında olur Geliş açısı, kritik açıdan daha büyükse, kırılma olmaz Gelen bütün ışık, yeniden çok yoğun ortama yansır Buna tam yansıma adı verilir
Mercek: Optik görüntüler oluşturmak için kullanılan, genellikle küresel yüzeylerle sınırlı, camdan ya da ışık kırıcı bir maddeden yapılmış hacim
Dalga ve titr: Sesötesi mercek, sesötesi titreşimlerin hızının, sesötesi inceleme ortamındakinden (su, insan vücudu) çok farklı olduğu bir gereç içinde (pleksiglas, kauçuk) gerçekleştirilen ve bu nedenle, sesötesi titreşimler için optik merceklerin ışığa gösterdiğine benzer özellikler gösteren düzenek (Sesötesi mercekler, akustik mikroskopta kullanılır )
Elektron: Elektron merceği, kondansatörlerden (elektrostatik mercek), bobin ya da elekromıknatıslardan (elektromanyetik mercek) oluşan ve optik merceklerin ışık demetlerini saptırdığı gibi, yüklü parçacık demetlerini de saptıran eksenel bakışımlı düzenek (Elektron akımlarını yakınsatmaya olanak veren elektron mercekleri birçok aygıtta, özellikle elektron mikroskoplarında kullanılır )
Mad: Kenarlara doğru incelen, nispeten az kalınlıkta mineral yığını
Oftalmol: Yapay gözmerceği genellikle katarakt nedeniyle çıkarılan gözmerceğinin yerine takılan implant (Afaki durumunda gözlükle yapılan düzeltmeye göre çok daha iyi olduğundan büyük bir gelişme göstermiştir:görme alanını tam görür ve görüntülerin boyutlarını da büyütmez )
Opt: Basamaklı mercek ya da Fresnel merceği merkezi bir mercek ile kırıcı ya da yansıtıcı çeşitli halkalardan oluşan ve koşut ışıklı geniş bir demet elde etmek için deniz fenerlerinde kullanılan optik sistem
Radyotekn: Radyoelektriksel mercek, bir radyoelektrik dalgasının yayılmasında, faz gecikmeleri oluşturmaya yarayan ve böylece yakınsama ya da ıraksama etkileri yaratan düzenek; faz gecikmelerinin değeri gelme açısına ya da düzenekten geçen ışının konumuna bağlıdır
Ansikl Opt: Bir mercek, genellikle küresel olan iki yüzeyle (diyoptrlar) sınırlı, kırıcı ve saydam bir ortamdan oluşur Doğurucuları koşut olan iki silindir yüzeyle sınırlı mercekler de vardır
Mercek: Bir cisimden gelen ışık ışınlarını odaklayarak cismin optik görüntüsünü oluşturmaya yarayan cam ya da bir başka saydam malzemeye denir Fotoğraf makinesi, gözlük, mikroskop, teleskop gibi aygıtlarda merceklerden yararlanılır Işık, merceğin içinde hava da olduğundan daha yavaş ilerler;
bu nedenle de ışık demeti hem merceğe girerken hem de mercekten çıkarken kırılır, yani aniden doğrultu değiştirir; merceklerin ışık ışınlarını odaklama etkisi de bu olgudan kaynaklanır
Merceklerde, duyarlı biçimde işlenmiş iki karşıt yüzey vardır; bu yüzlerin her ikisi de küresel olabileceği gibi, biri küresel öteki düzlemsel olabilir Mercekler, yüzeylerinin biçimine göre, çift dışbükey, düzlem dışbükey, yakınsak aymercek, çift içbükey, düzlem içbükey ve ıraksak aymercek olarak sınıflandırılır Merceğin eğri yüzeyi, gelen ışık demetindeki farklı ışınların farklı açılarla kırılmasına neden olur ve bu da, ışık demetindeki paralel ışınların tek bir noktaya doğru yönelmesine (yakınsama) ya da bu noktadan öteye doğru yönelmesine (ıraksama) yol açar Bu noktaya merceğin odak noktası ya da asal odağı denir Bir cisimden yayılan ya da yansıyarak gelen ışık ışınlarının kırılması, bu ışınların farklı bir yerden geliyormuş gibi algılanmasına yol açar ve nitekim bu farklı yerde de cismin optik bir görüntüsü oluşur Bu görüntü gerçek (fotoğrafı çekilebilir ya da ekran yansıtılabilir) olabileceği gibi sanal da (mikroskopta olduğu gibi, ancak merceğin içinden bakılarak görülebilir) olabilir Cismin optik görüntüsü cismin kendisinden daha büyük ya da daha küçük olabilir; bu durum, merceğin odak uzaklığına ve cisim ile mercek arasındaki uzaklığa bağlıdır
Duyarlı ve net bir görüntü oluşturabilmek için genellikle tek bir mercek yetmez; bu nedenle de örneğin teleskoplarda, mikroskoplarda ya da fotoğraf makinelerinde, değişik mercek kombinasyonlarından yararlanılır Bu tür mercek gruplarındaki merceklerden bazıları dışbükey ve bazıları içbükey olabileceği gibi bunların bazıları kırma ya da ayırma gücü yüksek ve bazıları da kırma ya da ayırma gücü düşük camdan yapılmış olabilir Gruptaki mercekler, her birinin sapıncı (aberasyon) istenen düzeyde olacak ve net bir görüntü elde edilebilecek biçimde, duyarlılıkla saptanmış uzaklıklarda yerleştirilir ya da üst üste yapıştırılır Mercekler yerleştirilirken yüzeylerinin eğiklik merkezinin asal eksen ya da optik eksen denen düz bir hattın üzerinde bulunmasına özen gösterilir
Mercekler çok değişik çaplarda yapılabilir; örneğin mikroskoplarda 0,16 cm, teleskoplarda ise 100 cm’lik mercekler kullanılabilir Daha büyük teleskoplarda mercek yerine içbükey aynalardan yararlanılır
Mercek Çeşitleri:
Yüzlerinin durumuna ve biçimine göre, üçü ince kenarlı, üçü de kalın kenarlı olmak üzere altı tür mercek ayırt edilir Yüzlerin C1 ve C2 eğrilik merkezlerinden geçen doğruya merceğin ana ekseni adı verilir ( yüzlerden biri düzlemse, merkezlerden biri sonsuza gider) S1 S2 uzunluğu merceğin kalınlığıdır Kalınlık, yüzlerin eğrilik yarı çapı karşısında önemsiz kalıyorsa, mercek ince, karşıt bir durum söz konusu olduğunda da kalındır İnce kenarların bazı özellikleri, incelenmesi daha güç olan kalın merceklere de yaygınlaştırılabilir
İnce mercekler: İnce mercekler durumunda S1 ve S2 noktalarının, ana eksen üzerinde bulunan ve merceğin optik merkezi adı verilen bir O noktasında birbiriyle karşılaştıkları kabul edilir İnce mercekler ince kenarlı ya da kalın kenarlı olabilirler İnce kenarlılar yakınsak merceklerdir: Ana eksene paralel olan her ışın demeti bir F noktasında yakınsayarak görünür hale geçer Kalın kenarlılar söz konusu olduğundaysa mercek ıraksaktır Bu sonuçlar kırılma yasalarından kaynaklanır Bir merceğin, bir cismin tam belirgin (net) bir görüntüsünü vermesi için, cismin her noktasına görüntünün bir noktası denk düşmelidir: Bu durumda sisteme stigmatik adı verilir Bunu gerçekleştirmek çok güç, hatta büyük boyutlu cisimler söz konusu olduğunda olanaksızdır Bununla birlikte, görüntüyü oluşturmak üzere kullanılan ışınların ana eksen ile yaptıkları eğim az olduğu ve mercekten optik merkeze yakın geçtikleri zaman (Gauss koşulları) yeterli derecede iyi bir sonuç elde edilir
Bu durumda, ana eksene dik bir düz cisimden, eksene dik bir düz görüntü sağlanır Görüntü, bu noktaya yerleştirilmiş olan bir ekran üzerinde gözlenebiliyorsa buna gerçek görüntü, karşıt durumdaysa zahir görüntü adı verilir
Yakınsak mercekler: Ana eksene paralel ışınların yakınsama noktası olan F noktasına ana görüntü-odak adı verilir Bu odak ana eksen doğrultusunda, sonsuzdaki bir nesne-noktanın görüntüsüdür (uygulamada nesne-noktanın görüntüsünün tam F üzerinde olması için, bu noktanın OF uzunluğunun on katı kadar bir uzaklıkta bulunması çoğunlukla yeterli olur )
Öte yandan, ana eksen üzerinde öyle bir F noktası da belirlenebilir ki, F’ten çıkan ışınlar mercekten geçtikten sonra ana eksene paralel bir ışın demeti oluştururlar Söz konusu F noktasının görüntüsü bu durumda ana eksen üzerinde sonsuzda bulunur ve F noktasına ana nesne-odak adı verilir
OF ve OF’ uzunlukları sırasıyla merceğin nesne-odak uzaklığı ve görüntü-odak uzaklığı olarak adlandırılır Ana eksene eğik olarak gelen paralel bir ışın demeti, ana eksene F’ nokatasında dik olan bir düzlemde ki bir H’ noktasında (ikincil görüntü-odak) yakınsar; bu düzlem, görüntü-odak düzlemidir Aynı biçimde, ikincil nesne-odak ve nesne-odak düzlemi tanımlanabilir
BİR NESNENİN YAKINSAK BİR MERCEK ARACILIĞIYLA VERİLMİŞ GÖRÜNTÜSÜNÜN GEOMETRİK OLARAK ELDE EDİLMESİ Basit olarak bir AB doğru parçasıyla gösterilmiş olan düz bir nesne ve mercek konumu ve boyutları çizim yoluyla saptanabilen bir A’ B’ görüntüsü verir(Çizim kolaylığı için bazı noktalar ana eksenden uzaklaşmış olsalar bile, Gauss koşullarının gerçekliği kabul edilir) Merceğin ana ekseni üstünde bir A noktasıyla, bu eksene dik olan AB doğrusu seçilir Aranan görüntü, merceğin ana eksenine dik olan ve B noktasından B’ görüntüsü bilindiğinden tam olarak saptanan bir A’B’ doğru parçasıdır B’ elde etmek için, B’den çıkan demetin iki özel ışını göz önüne alınır(geometride, bir nokta, bilinen iki doğrunun kesişmesiyle tam olarak belirlenir);sözgelimi, F noktasından geçerek gelen ışınla, O optik merkezden geçerek gelen ışın kullanılabilir Bu iki ışının kesişme noktası, aranan B’ noktasıdır(B’den geçen ışınların tümü, mercekten geçtikten sonra B’ noktasındanda geçerler) Nesnenin konumuna göre görüntü gerçek yada zahiridir
Iraksak mercekler:Ana eksene paralel ışınlı bir demete F’ noktasından çıkıyormuş gibi olan ıraksak bir demet denk düşer; bu noktaya anagörüntü-odak denir Ana nesne-odak adı verilen birF noktasında, zahiri olarak yakınsayacak biçimde bir demetin mercek üstüne gönderilmesiyle, ana eksene paralel olarak ortaya çıkan bir demet elde edilir Yakınsak mercekteki gibi, ıraksak merceklerde de görüntü-odak ve nesne-odak düzlemleri ile görüntü-odak ve nesne-odak uzaklıkları’nın tanımı yapılır
BİR NESNENİN IRAKSAK BİR MERCEK ARACILIĞIYLA VERİLMİŞ GÖRÜNTÜSÜNÜN GEOMETRİK OLARAK ELDE EDİLMESİ Burada da yakınsak mercekler için yapılan işlemin aynısı gerçekleştirilir:B noktasından çıkan iki özel ışın (sözgelimi,biri O’ dan, öteki F’ den geçen ) kullanılır Birincisi sapmaz;ikincisiyse ana eksene paralel olarak çıkan bir ışın gibi sapar Bu iki ışının kesişme noktası, aranan B’ noktasıdır Nesnenin konumuna göre, görüntü gerçek yada zahiridir
|