Konu
:
Mekanik Enerji-Mekanik Enerjinin Korunumu Hakkinda...
Yalnız Mesajı Göster
Mekanik Enerji-Mekanik Enerjinin Korunumu Hakkinda...
09-09-2012
#
1
Prof. Dr. Sinsi
Mekanik Enerji-Mekanik Enerjinin Korunumu Hakkinda...
MEKANİK ENERJİ-MEKANİK ENERJİNİN KORUNUMU HAKKINDA
Mekanİk enerjİ-mekanİk enerjİnİn korunumu hakkinda
MEKANİK ENERJİ
Mekanik enerji, bir sistemin kinetik enerjisi(hareket enerjisi)ile potansiyel enerjisinin (parçaların konuma bağlı olarak sistemde depolanan enerji) toplamı
Yalnızca kütle çekimi kuvvetlerini etkisi altında olan ya da sürtünme altında ve hava direnci gibi enerji kaybına yol açan kuvvetlerin bulunmadığı ya da yok sayılabilecek derecede küçük olduğu ideal bir sistemin mekanik enerjisi sabittir
Bu nedenle salınım hareketi yapan bir sarkacın hızının en büyük ve yerden yüksekliğin en az olduğu dikey konumunda kritik enerjisi en büyük ve potansiyel enerjisi en küçük değerdedir
Sarkaç hızının 0 ve yerden yüksekliğinin en büyük olduğu salınımın uç noktalarında en düşük kinetik enerjiye ve en yüksek potansiyel enerjiye sahiptir
Sarkaç hareket ederken enerji sürekli olarak bir biçimden öbürüne dönüşür
Sarkacın göbek milindeki sürtünme ve havanın direnci yok sayıldığında kinetik ve potansiyel enerjilerin toplamı yani mekanik enerjisi sabittir
Aslında sarkacın havanın drencine ve sürtünme kuvvetlerine karşı yaptığı iş nedeniyle sistemin dışına çok küçük bir enerji aktarıldığından her salınım sonunda enerji bir miktar azalır yer - ay sisteminin mekanik enerjisi de hemen hemen sabittir ve ritmik olarak kinetik potansiyel enerjiler birbirine dönüşür
Ay’ın elips yörüngesi üzerinde yerden en uzak noktadaki hızı ve kinetik enerjisi en küçük potansiyel ise en büyük değerdedir
Ayın’ en hızlı hareket etiği nokta yere en yakın olduğu konumudur ve bu konumda potansiyel enerjisinin bir bölümü kinetik enerjiye dönüşmüş durumdadır
MEKANİK ENERJİNİN
KORUNUMU
M kütleli bir cisim düşey olarak yukarıya doğru V1 hızıyla atılmış olsun h kadar yükseklikteki L noktasından geçerken hızı V2 olsun
Cismin L deki kinetik enerjisi ;
Ek2=1/2 mV2
K daki kinetik enerjisi ;
Ek1 = 1/2 mV12
olduğuna göre kinetik enerji değişimi ;
DEk = Ek2 - Ek1
DEk=1/2 m (V22 - V11 )
olur
Zamansız hız bağıntısından ;
V22 V21 - 2gh
yerine yazarsak ;
DEk = ½ m ( -2g h)
DEk = - m
g
h olur
Eksi işareti, kinetik enerjinin azaldığı anlamına gelir
Cismin L deki potansiyel enerjisi ; Ep2 = - mgh
k daki potansiyel enerjisi ; Ep1 = 0
olduğuna göre, potansiyel enerli değişimi ;
DEp = EP2 - EP1
DEp = mgh - 0
DEp = +mgh olur
Pozitif işareti, potansiyel enerjinin arttığı anlamına gelir
Dikkat edile*cek olursa kinetik enerjideki azalma miktarı potansiyel enerjideki anma miktarına eşittir
Öyleyse cisim yukarıya doğru çıkarken kaybolan kine*tik enerjisi potansiyel enerjiye dönüşmektedir
M noktasında ise K daki kinetik enerjisinin tamamı potansiyel enerjiye dönüşmüştür
Demek ki herhangi bir noktadayken kinetik enerji ile potansiyel enerjinin toplamı sabit kalmaktadır
kinetik enerji ile potansiyel enerjinin toplamına me*kanik enerji denmektedir
Emekanik = Ek +Ep = Sabit
Bu sonuca mekanik enerjinin korunumu denir
Tabi ki mekanik enerji sürtünmenin olmadığı ortamlarda korunur
Aksi halde mekanik enerji*nin bir kısmı is enerjisine dönüşür
Örnek 1:
Sekil 1 deki 1 kg lık cisim V0 = 20 m/s ilk
ilk hızla yukarıya doğru düşey olarak atılıyor
Cismin; Şekil 1
a) Hızı 10 m/s olduğu anda yerden yüksekliği kaç metredir?
b) Cismin çıkabileceği maksimum yükseklik kaç metredir?
Çözum:
a) Enerjinin korunumundan giderek soruyu çözelim
şekiI 9-18 deki K ve L konumlarındaki toplam enerjilerin eşitliği yazılırsa ;
Ek1 + Ep1 = Ek2 + Ep2
1/2 m V02 + 0= 1/2 mV2 + m
g
h
elde edilir
Bilinen değerler yerine yazılırsa ;
1/2 1
202 = 1/2 1
102 + 1
10h
200 = 50 +10h
h= 15 m bulunur
b) şekil 9-18 de görülen cismin K daki kinetik enerjisinin tamamı M noktasında potansiyel enerjiye dönüşmüştür
öyleyse,
Ek1 = Ep2
1/2 m V2 = m g hmak
1/2 1
202 = 1
10 hmak
200 = 10 hmak
hmak
= 20 m bulunur
Örnek 2:
Şekil 2 da görülen yayın
esneklik katsayısı k dır
m kütleli cisim
sürtünmesiz yatay düzlemde V hızıyla
gelip yaya çarpıyor
Cismin hı*zının;
Şekil 2
a) V/2 olduğu andaki
b) Sıfır olduğundaki x sıkıştırma miktarını veren ifade nedir?
Çözüm:
a) İlk durumdaki enerjiler toplamı ikinci durumdaki enerjiler toplamı*na eşit olacağı için
1/2 m V2 = 1/2 m(V/2)2 + 1/2 kx2
3/6 m V2 = 1/2 kx2
x = 3m/k
V/2 olur
b) Cismin kinetik enerjisinin tamamı yayda esneklik potansiyel enerjisine dönüşmüştür
1/ 2m V2 = 1/2 kx2
x = m/k
V olur
Prof. Dr. Sinsi
Kullanıcının Profilini Göster
Prof. Dr. Sinsi Kullanıcısının Web Sitesi
Prof. Dr. Sinsi tarafından gönderilmiş daha fazla mesaj bul