ForumSinsi - 2006 Yılından Beri

ForumSinsi - 2006 Yılından Beri (http://forumsinsi.com/index.php)
-   Eğitim & Öğretim (http://forumsinsi.com/forumdisplay.php?f=651)
-   -   Cebir Matematik Bilimi (http://forumsinsi.com/showthread.php?t=971379)

Prof. Dr. Sinsi 10-21-2012 10:02 AM

Cebir Matematik Bilimi
 

Cebir Matematik Bilimi

Cebir, yapı, bağıntı ve nicelik üzerine uğraşan bir matematik dalıdır. Bilinmeyen değerlerin, simge ve harflerle betimlenerek kurulan denklemlerle bulunması (ya da bilinmeyenlerin arasındaki bağıntının bulunması) temeline dayanır. Cebir temellerini El Harezmi'den alır. Cebir sözcüğü de Harezmi'nin "El’Kitab’ül-Muhtasar fi Hısab’il Cebri ve’l-Mukabele” (Cebir ve Denklem Hesabı Üzerine Özet Kitap) adlı eserinden gelmektedir. Bu eser aynı zamanda doğu ve batının ilk müstakil cebir kitabı olma özelliğini taşımaktadır. El Harezmi'den bu yana cebir çok değişmiştir. Ayrıca Cezeri'nin Kitabü'l-Hiyal adlı kitabında da bu konuyla ilgili bilgiler bulunabilir.

Cebir

Soyut cebir veya soyut matematik, matematiğin bir alanı olup, cebir, vektör uzayı, modüller, alanlar, halkalar gibi cebirsel yapılar üzerinde çalışır. Bazı yazarlar günümüzde, "soyut cebir" yerine "cebir" terimini kullanmaktadır.

Soyut cebir kavramı günümüzde tüm cebirsel yapılar üzerine yapılan çalışmayı ifade etmektedir, temel cebirden farkı, bilinmeyen, çözümsüz gerçek ve karmaşık sayılardan oluşan cebirsel ifadeler ve formüller için doğru kurallar gösterir.

Temel cebir, gerçek alan ve basit cebir olarak bilinen yapıların başlangıç kısmı olarak ele alınabilir.

Doğrusal cebir

Matematiğin, yöneyler (vektör), yöney uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve dizeyleri (matris) inceleyen alanıdır. Yöney uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

Modern doğrusal cebirin geçmişi 1843 ve 1844 yıllarına dayanır. 1843'te William Rowen Hamilton Kuaterniyonları keşfetti. 1844'te Hermann Grassmann Die lineale Ausdehnungslehre adlı kitabını yayınladı. Arthur Cayley, doğrusal cebirin en temel fikirlerinden birisi olan dizeyleri 1857 yılında tanıttı. Ne var ki doğrusal cebir, asıl büyük atılımlarını 20. yüzyılda yapmıştır.

Temelleri

Doğrusal Cebir'in temelleri yöneylerin incelenmesinde yatar. Burda sözü edilen yöney, yönü, büyüklüğü ve doğrultusu olan bir doğru parçasıdır. Vektörler, kuvvet gibi fiziksel birimlerin ifade edilmesinde kullanılabilir. Birbirlerine eklenebildikleri gibi sabit bir skalerle de çarpılabilirler. Böylece basit bir reel yöney uzayının oluşumu gösterilebilir.

Modern Doğrusal Cebir, 2 ve 3 boyut sınırlamasını kaldırarak isteğe bağlı veya sonsuz boyutlu uzaylarda işleyebilecek şekilde genişletilmiştir. 2 ve 3 boyutlu uzaylardaki sonuçların büyük bir kısmı n-boyutlu uzaylarda da geçerlidir. N boyutlu bir uzayın görselleştirilmesi zor gibi görünse de aslında bu tür uzaylar temel bilimlerde ve günlük hayatta sık kullanılır. Örneğin 8 ülkenin ulusal gelirini listelediğimiz zaman bu liste 8 boyutlu bir vektörü ifade eder. Bu vektördeki herbir elemanın bir ülkenin ulusal gelirini temsil ettiğini söyleyebiliriz.

Matematikte, soruna doğrusal bir açıdan bakıp, dizey cebiriyle ifade ettikten sonra onu dizey işlemleriyle çözmek, matematikte sık kullanılan uygulamalardan birisidir. Örneğin doğrusal denklem dizgeleri (sistem) matris yardımıyla ifade edilip çözülerek denklemin kökleri elde edilebilir.

Basit cebir, öğrencilere öğretilen en temel matematiktir. Aritmetik denklemlerin ve eşitsizliklerin genelleştirilmesi, değişkenler, miktarlar arası ilişkiler gibi konularda yararlıdır.




Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.