ForumSinsi - 2006 Yılından Beri

ForumSinsi - 2006 Yılından Beri (http://forumsinsi.com/index.php)
-   Matematik / Geometri (http://forumsinsi.com/forumdisplay.php?f=660)
-   -   Ünlü Matematikçiler Ve Katkıları (http://forumsinsi.com/showthread.php?t=87716)

[KAPLAN] 07-12-2009 11:10 AM

Ünlü Matematikçiler Ve Katkıları
 
Muhammet ibni Musa al-Harazmi (780-850):


http://www.detaygeomat.com/uploads/m...rezmi-full.jpgIsminden güney Özbekistan’da dogdugu anlasiliyor. Hayati ve nerelerde okudugu hakkinda güvenilir bir bilgi yoktur. 810 dan sonra Bagdat’ta Dar’ül Hikmet’in kütüphanecisi olarak çalismaya baslamis ve 4 kitap yazmistir. Bunlardan biri cografya, biri astronomi, biri aritmetik digeri de bir cebir kitabidir. Biz bu son ikisi hakkinda biraz bilgi verecegiz. Al-Harazmi’nin en ünlü kitabi “ Al-Cebir ve Al-Mukabele” dir. Bu “indirgeme ve denkleme” manasina gelen baslik, daha sonralari “Cebir” (veya Algebra) olarak kisaltilacaktir. Bu kitapta Al-Harazmi ikinci dereceden bir polinomu katsayilarinin isaretine göre 6 sinifa ayirarak, sistematik olarak, her sinif için, köklerin nasil bulunacagini “algoritmik” bir yaklasimla göstermektedir. Örnek olarak, bizim bu gün olarak yazacagiz bir polinomu seklinde yazmaktadir ve bu polinomun köklerini bulmak için adim adim ne yapilmasi gerektigini söylemektedir. Unutmamak gerekir ki o tarihlerde henüz negatif sayilar kullanilmiyor ve sayi uzunluk olarak düsünülmektedir. Müslümanlar, burada söz konusu olan dönemde (750-1450), bir istisna (Abu Waffa (940-998)) disinda, negatif sayilari hiç kullanmamislardir.

Al-Harazmi’nin, verilen bir polinomun kökünü bulmak için, izlemis oldugu adim adim yaklasima günümüzde “algoritmik” yaklasim denmektedir; bu sözcük Al-Harazmi’nin ismi bozularak türetilmistir. Al Harazmi, daha sonra, algoritmik olarak buldugu kökü geometrik olarak da bularak yaptiklarini dogrulamaktadir. Son olarak ta Al-Harazmi kitabinda, bu yöntemin miras hesaplarina pratik uygulamalarini vermektedir. Bu kitap 1140 larda Latinciye çevrilmis ve 1600 lere kadar bati okullarinda kullanilmistir. Bu eser, hakkinda çok tartisma olan bir eserdir. Kimilerine göre, cebir’in esas babasi Diofand’dir; Al-Harazmi’nin cebiri Mezopotamya matematiginden daha ileri düzeyde degildir. Bu da büyük ölçüde dogrudur. Kimileri ise, bu eserin her sey ile orijinal oldugunu savunmakta. Açik olan bir sey varsa, o da bu eserden sonra, matematikte “cebir” diye bir ana bilim dalinin ortaya çikmasidir. Önemli olan diger bir husus da, algoritmik yaklasim dedigimiz, bu kitabin yöntemidir. Al-Harazmi’nin diger kitabi bir “Hesap” kitabidir. Bu kitabin Arapçasi günümüze ulasmamistir; var olan bir Latince çevirisidir. Bu kitapta, Al- Harazmi bugün kullandigimiz Hind-Arap rakamlari olarak bilinen ( 1,2,...,9, 0) rakamlari tanitmakta; onlarla sayilarin nasil yazildigini, toplama, çarpma gibi islemlerin nasil yapildigini anlatmaktadir. Burada sifir bir “ bosluk dolduran sembol” olarak kullanilmistir, sayi olarak degil. Sayi olarak, sifir ilk kez, 876 de Hindistan’da kullanilmistir. Daha önce de kullanildigi hakkinda bilgiler vardir ama herkesin hem fikir oldugu tarih bu tarihtir. Negatif sayilarin da Hindistan’da 620 lerde kullanildigi bilinmektedir ama az-çok yaygin olarak kullanilmaya baslanmalari 1600 ler den sonradir.

Ömer Hayyam (1048-1131) :

http://www.detaygeomat.com/uploads/m...ar_chayyam.jpgNisabur da dogan Ömer Hayyam, 1073 den sonra, Isfahan’da kurulan rasathanede, Selçuk hükümdari Melik Sahin “müneccim basi” olarak çalismaya baslamis. Zamanimiza Rubailerinden baska bir cebir kitabi ve astronomiyle ilgili çalismalarindan da bazi kisimlar kalmistir. Cebir kitabinda, üçüncü dereceden polinomlarin bir siniflandirmasini yaparak, konik kesitlerini kesistirerek, bu polinomlarin köklerini geometrik olarak bulmaya çalismistir. Ömer Hayyam astronom olarak, gözlem ve ölçümlere dayali, bir takvim reformu yaparak, yeni bir takvim (Celali takvimi) hazirlamistir. Bu gayeyle, Ömer Hayyam bir günes yilinin uzunlugunu 365.24219858156 gün olarak hesaplamistir. Simdi bilinen, bir yilin 365.242190 gün oldugunu ve her 70-80 senede virgülden sonraki 6. rakamin degistigini burada belirtelim.
Sarafeddin al-Tusi (1135-1213) :


http://www.detaygeomat.com/uploads/m...iphoto_jpg.jpgIsminden, Iran’in Tus sehrinde dogdugu anlasilmaktadir. Muhtemelen Mesed yada Nisabur’da yetismistir. Sam, Halep, Musul ve Bagdat da matematik okutmustur. Önemli bir cebir kitabinin yazaridir. S. Al-Tusi de, Ömer Hayyam gibi üçüncü dereceden polinomlarin köklerini bulmak için ugrasmistir. Harazmi’nin izinden giden S. Al-Tusi, üçüncü dereceden denklemleri 25 sinifa ayirarak, cebirsel yaklasimla, onlarin köklerini bulmaya çalismistir. Bugünkü notasyonla, gibi bir denklemin belli bir aralikta çözümünün olabilmesi için, nin in maksimumu ile minimumu arasinda olmasi gerektigi anlayan S. Al-Tusi , bu ifadenin maksimumun bu ifadenin “türev” inin sifir oldugu yerde aramasi gerektigini anlamistir. Kimi yazarlara göre bu türevin kesfidir. Ne yazik ki o zaman bu kesfin degeri anlasilmamis, türevin farkina varilmamistir. Matematigin en önemli kesiflerinden olan türev, 1636 de Fermat tarafindan tekrar kesfedilecek ve bu da, analitik geometri ile beraber, kalkülüsün dogumuna neden olacak ve matematikte bir devrim yaratacaktir.

Nasireddin Al-Tusi (1201-1274) :

O devir Islam dünyasinin en büyük bilim adamlarindan olan N. Al-Tusi, Tus ve Nisapur’da okumustur. Mantik, Ahlak, Felsefe, Astronomi ve Matematik kitaplari yazmistir. Hayatinin önemli bir kismini, Hasan El-Sabahin örgütünün merkezlerinden biri olan, ve çok iyi bir kütüphanesi oldugu bilinen, Alamud kalesinde arastirma yaparak geçirmistir. Bu kale 1256 da Hülagü han tarafindan alindiktan sonra, Hülagü hanin müneccim basi olmus, 1262 den sonrada Marageh’de ( Güney Azerbaycan’da, Tebriz civarinda ) Hülagü hanin emriyle kurulan rasathanede arastirmalarini sürdürmüs ve bir ziç, Ziç-i-Ilhani’ yi hazirlamistir. Ziçler, astronomik hesaplar için gerekli olan, sinüs cetvelleridir. N. Al-Tusi’nin astronomi ile ilgili çalismalari, Batlamyüs’den sonra Copernicus’un çalismalarina kadar, astronomi hakkinda en önemli çalismalardan biri olarak kabul edilir. Matematikle ilgili en önemli çalismasi, düzlem ve küresel trigonometri ile ilgili çalismalaridir. Bu eserden sonra trigonometri, astronomi için bir araç olmaktan çikip, matematigin bir ana dali olmustur. Bunun disinda, Yunanca’dan çeviri çok sayida matematik kitaplarina izah ve yorumlar yazmis; bir sayinin n inci kökünü bulmak için çalismalar yapmistir. Batili matematikçi ve astronomicilerin, eserlerinden en çok yararlandiklari islam dünyasi bilim adamlarinin basinda N. Al-Tusi gelir.

Cemsit Al-Kasi (1380-1429) :

Kasan (Iran) da dogmustur. Kasan’da yetistigi anlasilan Al-Kasi, 1420 den itibaren ölene kadar, Ulug Bey ve Kadizade ile Semarkand’ ta Ulug Bey medresesinde ve rasathanesinde çalismistir. Timurleng’in torunu olan Ulug Bey (1393-1449) iyi bir matematikçi, bilim asigi bir hükümdardi. O tarihlerde Ulug Bey’ in medresesinde 60 civarinda zamanin en iyi bilim adamlari ders vermekte ve arastirma yapmaktadir; bu metrese, pozitif bilimlerin okutuldugu ve bilimsel bir sayginligi olan Islam ülkelerindeki son metresedir. Al-Kasi, Ulug Bey’le beraber, N. Al-Tusi’nin ziçlerinden de yararlanarak, Ziç-i-Hakani olarak bilinen Ulug Bey’in ziçlerini hazirlamistir. Bu ziç’te 1 den 90 dereceye kadar olan açilarin, birer dakika arayla, sinüsleri verilmistir. Bu da 60x90=5400 giris demektir. Her açinin sinüsü, virgülden sonra 8. haneye kadar verilmistir. Bu is bugünün imkanlariyla bile, kolayca yapilacak bir is degildir. Ayrica bu ziç, günes, ay ve gezegenlerin konumu ve hareketleri hakkinda detayli bilgi ve gözlem tablolari içermektedir. Al-Kasi muhtesem bir hesap yetenegi olan matematikçidir. Yari çapi 1 olan bir daireyi 3x2^28=805. 306. 368 kenarli bir poligonun içine oturtarak, pi sayisinin virgülden sonra 16 hanesini ( 10 ve 60 tabanli sayi sistemlerinde) dogru olarak vermistir. Bu rekor ancak 200 yil sonra kirilabilecektir. Al-Kasi, içeriginin zenginli, ispatlarinin açikligi ile orta çagin en iyi kitaplarindan biri olarak kabul edilen “Aritmetigin Anahtari” baslikli bir kitabin da yazaridir. Ondalik kesirlerle 4 islemin nasil yapilacagini açiklayan da Al-Kasi’dir.

Kaynak: Detay Hoca dan Matematik


Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.