![]() |
So2 Elementi,Nh3, So2, Lif Hakkında Bilgiler,Nh3 Bileşiği Hangi Elementten Oluşur...
SO2 Elementi,NH3, SO2, LiF hakkında bilgiler,NH3 bileşiği hangi elementten oluşur...
SO2 Elementi,NH3, SO2, LiF hakkında bilgiler,NH3 bileşiği hangi elementten oluşur... SO2 ELEMENTİ D oğada yaygın olarak bulunan genellikle sarı renkte kimyevi bir element. Kimyada sembolü S olup çok eskiden beri bilinen elementlerden biridir. Özellikleri: Periyodik cetvelde IVA grubunda bulunur. Atom numarası 16, atom ağırlığı ise 32.064’tür. 2-, 4+ ve 6+ değerliklerini alabilir. Oksijensiz bileşiklerinde kararlı olup dâimâ 2- değerliklidir. Reaksiyon verme kabiliyeti oldukça iyi olup soygazlar hâriç diğer elementlerin hepsi ile reaksiyon verir. Kütle numaraları 29 ile 38 arasında değişen dokuz izotopu vardır. Tabiatta bulunan kükürtün takribi % 95’i S-32 kararlı izotopudur. % 4’ünü S-34 kararlı izotopu teşkil eder. Diğer kararlı izotoplarının kütle numaraları ise 33 ve 36’dır. Radyoaktif izotoplardan S-29 yarılanma süresi 0.19 saniye S-35 izotopunun yarılanma süresi 88 gündür. Saf kükürt tadsız ve kokusuzdur. Karbon disülfürde ve karbon tekraklorürde çözünür, fakat suda çözünmez. Elementin erime noktası 119°C, kaynama noktası ise 444,6°C’dir. Kükürt havada 261°C’de hemen yanabilir. Isı ve elektrik iletkenliği zayıftır. Kükürtün yoğunluğu 2,07 g/cm3’tür. Sertliği mohs derecesine göre 2,5 civârındadır. Kükürtün çeşitli allotropları vardır ve bunların bazı kimyevî özellikleri birbirinden farklıdır. Bu allotroplardan en meşhuru ortorombik kristal hâlinde kükürt olup, buna a kükürt de denir ve amber rengindedir. Monoklin kristal yapıya sâhib olan b-kükürt hafif sarı renktedir. Isıtılmakla a-kükürt b-kükürt hâline dönüşebilir. b-kükürt soğutulduğu zaman tekrar a- kükürte yavaş olarak dönüşür. Daha başka kristal halleri de vardır. Bunları l-kükürt ve m-kükürttür. Kükürt ısıtılırsa, 115-120°C dolayında açık sarı renk alır. 160°C’de l -kükürt hâlini alır. 160°C’den sonra renk koyulaşır ve polimerleşme başlar. 187°C’de bütün kütle reçine gibi donar. 444,6°C’de akıcı bir sıvı ele geçer. Bu sıvı suya dökülürse sarı, saydam ve yumuşak lastik gibi kütle ele geçer. Buna amorf kükürt denir. Kükürt buharları S8 ve S6, yüksek sıcaklıkta ise S4 ve S2moleküllerinden oluşur. a ve b kükürtler 8 atomlu moleküller hâlindedir. Bulunuşu: Kükürt tabiatta çok yayılmış olarak bulunur. Bir kısmı elementel hâlde; bir kısmı ise bileşik hâlindedir. Yerküresinin % 0.052’sini teşkil eder. Elementel hâlde, Türkiye’mizde, Amerika’da, İtalya veİspanya’da bulunur. Yurdumuzdaki en mühim yatak Keçiborlu’dadır. Bileşik hâlinde en çok pirit (FeS2) halkopirit (CuFeS2), glanit (PbS), çinkoblend ZnS ve sülfatlar hâlinde bulunur. Elde edilişi: Serbest halde kükürt ihtiva eden yataklardan Kükürt-Fransh metodu ile elde edilir. Bu metodla 350 metre kadar derinlikteki kükürtler çıkarılır. Kükürt yatağına kadar içiçe geçmiş üç boru indirilir. En iç borudan basınçlı hava, dış borudan ise 160°C’de sıcak su buharı gönderilir. Buhar sıcaklığı ile eriyen kükürt basınçlı havanın sürüklemesi ile ikinci borudan yeryüzüne çıkar. Su-kükürt karışımı havuzlara alınarak bekletilir ve kükürt çöker. Bu kükürt % 99 saflıktadır. Maden kömürlerinin destilasyonu esnasında elde edilen hidrojen sülfür (H2S) oksijen ile reaksiyona sokulur ve elementel kükürt elde edilir: 2H2S+O2 ® 2H2O+2S Pirit (FeS2) de önemli bir kükürt kaynağıdır. Piritten elde edilen kükürt dioksit (SO2), hidrojen sülfür ile reaksiyona sokulursa serbest kükürt ele geçer: SO2+2H2S ® 3S+2H2O Kükürt dioksit, karbon monoksit ile reaksiyona sokulursa yine kükürt elde edilir: SO2+2CO ® S+2CO2 Bileşikleri: Kükürtün oda sıcaklığında reaksiyon verme özelliği yok gibidir. Oda sıcaklığında ancak flour ve civa ile reaksiyon verebilir. En önemli bileşiği sülfat asidi (H2SO4)dir. (Bkz. Sülfat asidi.) Kükürt dioksidin su ile reaksiyonundan sülfit asidi elde edilir: SO2+H2O ® H2SO3 Sülfit asidi organik bileşiklerin sentezinde kullanılan bir maddedir. Saman ve kumaşların ağartılmasında, kâğıt sanâyiinde beyazlatıcı olarak, metalurjide, analitik kimyâda, meyve ve yiyeceklerin saklanmasında, parafinlerin rafinasyonunda ve sülfit bileşiklerinin elde edilmesinde kullanılır. Sülfit asidi renksiz bir sıvı olup, karakteristik bir kokusu vardır. Yoğunluğu 1,03 g/cm3 olup suda çözünür. Oldukça kararsız olup hava ile okside olarak H2SO4 hâlini aldığı gibi SO2 fazlasından dolayı bozunabilir. Kükürt monoklorür (dikükürtdiklorür) çok bilinen bir kükürt halojen bileşiğidir. Formülü S2Cl2 olup bazı yağların klorlandırılmasında, mobilyada kullanılan kuruyan yağların elde edilmesinde, yağların ve kauçuğun soğuk vulkanizasyonunda, organik maddelerin klorlandırılmasında, askeriyede zehirli gaz olarak, böcek öldürücü olarak ve şekerin saflaştırılmasında kullanılır. Kükürt monoklorür erimiş kükürt içinden klor gazı geçirmek suretiyle elde edilir. Sarımsı-kırmızı renkte olup, keskin pis bir kokusu vardır. -82°C’de donar ve 138°C’de kaynar. Su ile kolayca çözünür. Organik çözücülerde de çözünür. Tiyonil klorür; kükürt oksiklorür olarak da bilinen bu bileşiğin formülü SOCl2’dir. Organik sentezlerde klorlama vasıtası olarak, A vitamininin, antihistaminiklerin, boyaların elde edilmesinde kullanılır. Renksiz veya kırmızı sıvıdır. Deriyi yakar ve su ile bozunur. Buharı da sıhhat için zararlıdır. Kükürtdioksit (SO2); renksiz, atmosferik basınçta iğneleyici, astım yapan bir gaz veya yüksek basınçta renksiz bir sıvıdır. Kükürdün havada yakılması ile elde edilir. Ayrıca metal sülfürlerin kavrulması ile, hidrojen sülfürün yakılması ile ve yağ, tabiî gaz rafinasyonunda veya gaz fabrikasyonunda yan ürün olarak elde edilir. Suda bol miktarda çözünerek sülfit asidini meydana getirir. Alkol ve eterde çözünür. 0°C’de spesifik giavitesi 1,43’tür. Sıvı SO2 elektrik akımı iletmez. Atmosfer basıncında -10°C’de kaynar. Yağların ve yiyeceklerin beyazlatılmasında, etlerin saklanmasında, kimyasal maddelerin elde edilmesinde, kâğıt îmâlatında, soğutmada ve camların tavlanmasında kullanılır. Kullanılışı: Kükürt, sanâyide hammadde olarak yaygın bir şekilde kullanılan maddelerden biridir. Meselâ Amerika’da yıllık kükürt tüketimi kişi başına 45 kg’dır. Bu oran Avrupa’da ortalama 32 kg, Hindistan’da 0,9 kg’dır. Üretilen kükürtün % 86’sı sülfat asidi îmâlâtında, bu asidin de % 47’si gübre îmâlatında kullanılır. Çelik ve petrol sanayiindeki işlemlerde, cevherden, metalleri elde etmede, kauçuk üretiminde, boyalarda, sentetik fiber üretiminde, katalizör olarak deterjan, sentetik reçine birçok organik ve anorganik maddelerin yapımında kullanılır. Zirâatte böcek ve mantar öldürmede ve radyoizotop olan S-35 birçok ilmî araştırmada kullanılır. Atom numarası: 16 Simge: S Kütle numarası: 32.064 Kaynama Noktası : 444.6 Erime Noktası : 119 Yoğunluk: 2.07 Buharlaşma Isısı: 3.01 Kaynaşma (Füzyon) Isısı: .34 Elektriksel iletkenlik: 1e-23 Isıl iletkenlik: 0.0007 Özgül Isı Kapasitesi: .175 LİTYUM FLORÜR(lif) Belirli bir oksidasyon veya redüksiyon yarı-reaksiyonu için “redüksiyon potansiyeli” adıyla bilinen rakamsal bir değer mevcuttur. Sembolü E° olup standart termodinamik şartlar altında (tüm gazların 25°C, 1 atm de ve tüm sulu çözeltilerin 1M konsantrasyonda olduğu) anlamına gelir ve reaksiyonun yazıldığı yönde gerçekleşme olasılığının büyüklüğünü gösterir. Birimi Volt dur.Pozitif bir redüksiyon potansiyeli değeri, ürünlerin (reaksiyonun sağ tarafındaki çıktılar) oluşumunu desteklerken, negatif bir değer reaksiyona giren maddelerin oluşumundan yanadır. Diğer bir deyişle, redüksiyon potansiyeli ne kadar negatifse, reaksiyon gerçekleşmekten o kadar uzaktır. Örneğin; Li(s) » Li+ + e- ..........Eº = 3.05 V F2 + 2 e- » 2 F- ........Eº = 2.87 V reaksiyonlarında, lityumun oksidasyonu ve florun redüksiyonu görülmektedir. Yazıldığı şekliyle her iki reaksiyon da pozitif E° değerine sahiptir ve yazıldıkları yönde gerçekleşmeleri beklenir. Aslında bu reaksiyonlar, bir oksidasyon (lityum) ve redüksiyon (flor) reaksiyonu için en yüksek potansiyel değerlerine sahiptirler.E° değerleri aynı zamanda, bir redoks reaksiyonunda hangi atomun veya molekülün elektron alacağını tahmin etmek için de kullanılabilir. Örneğin, manganez ve çinkonun oksidasyon potansiyelleri pozitiftir, her iki atomun da elektronları kolayca uzaklaştırılabilir: Zn(s) » Zn2+(**) + 2 e-...........E° = 0.763 V Mn(s) » Mn2+(**) + 2 e-.........E° = 1.18 V Redüksiyon potansiyelleri karşılaştırıldığında, manganezin elektronlarını uzaklaştırmaya çinkodan daha yatkın olduğu görülür. Kısacası, hem katı hem de iyon halinde manganez ve çinko içeren bir çözeltide, aşağıdaki yarı-reaksiyonlar oluşacaktır: Zn2+(**) + 2 e- » Zn(s)...........E° = - 0.763 V Mn(s) » Mn2+(**) + 2 e-.........E° = 1.18 V Burada çinko redüklenmek istememesine rağmen, manganez reaksiyonunun yüksek potansiyeli, çinkoyu fazla elektronları absorbe etmesi için zorlayacaktır. Zn2+(**) + Mn(s) » Zn(s) + Mn2+(**)........E° = 0.417 Bazı redüksiyon potansiyellerinin pozitif, diğerlerinin negatif olması, bu değerlerin nasıl ölçüldüğü sorusunu akla getirebilir. Redüksiyon potansiyellerinin ölçüldüğü bir “mutlak standart” yoktur. Bunun yerine, bilim dünyası, H+ iyonlarının hidrojen gazına redüksiyonuna ilişkin redüksiyon potansiyelinin 0.00 V olduğunu kabul etmiştir. 2H+ + 2e- » H2..........E° = 0.00 V Bu sistem, tüm diğer redoks reaksiyonları bu değere karşı ölçüldüğü için referans elektrodu veya standart hidrojen elektrodu olarak bilinir. Daha kuvvetli oksitleyici reaktifler (pozitif redüksiyon potansiyeline sahip olanlar) hidrojeni oksitlenmeye zorlarken, daha zayıf olanlar (negatif redüksiyon potansiyeline sahip olanlar) H+ tarafından oksitlenirler. Ancak, bu değerlerin standart şartlar için geçerli olduğu unutulmamalıdır. SO2 ELEMENTİ D oğada yaygın olarak bulunan genellikle sarı renkte kimyevi bir element. Kimyada sembolü S olup çok eskiden beri bilinen elementlerden biridir. Özellikleri: Periyodik cetvelde IVA grubunda bulunur. Atom numarası 16, atom ağırlığı ise 32.064’tür. 2-, 4+ ve 6+ değerliklerini alabilir. Oksijensiz bileşiklerinde kararlı olup dâimâ 2- değerliklidir. Reaksiyon verme kabiliyeti oldukça iyi olup soygazlar hâriç diğer elementlerin hepsi ile reaksiyon verir. Kütle numaraları 29 ile 38 arasında değişen dokuz izotopu vardır. Tabiatta bulunan kükürtün takribi % 95’i S-32 kararlı izotopudur. % 4’ünü S-34 kararlı izotopu teşkil eder. Diğer kararlı izotoplarının kütle numaraları ise 33 ve 36’dır. Radyoaktif izotoplardan S-29 yarılanma süresi 0.19 saniye S-35 izotopunun yarılanma süresi 88 gündür. Saf kükürt tadsız ve kokusuzdur. Karbon disülfürde ve karbon tekraklorürde çözünür, fakat suda çözünmez. Elementin erime noktası 119°C, kaynama noktası ise 444,6°C’dir. Kükürt havada 261°C’de hemen yanabilir. Isı ve elektrik iletkenliği zayıftır. Kükürtün yoğunluğu 2,07 g/cm3’tür. Sertliği mohs derecesine göre 2,5 civârındadır. Kükürtün çeşitli allotropları vardır ve bunların bazı kimyevî özellikleri birbirinden farklıdır. Bu allotroplardan en meşhuru ortorombik kristal hâlinde kükürt olup, buna a kükürt de denir ve amber rengindedir. Monoklin kristal yapıya sâhib olan b-kükürt hafif sarı renktedir. Isıtılmakla a-kükürt b-kükürt hâline dönüşebilir. b-kükürt soğutulduğu zaman tekrar a- kükürte yavaş olarak dönüşür. Daha başka kristal halleri de vardır. Bunları l-kükürt ve m-kükürttür. Kükürt ısıtılırsa, 115-120°C dolayında açık sarı renk alır. 160°C’de l -kükürt hâlini alır. 160°C’den sonra renk koyulaşır ve polimerleşme başlar. 187°C’de bütün kütle reçine gibi donar. 444,6°C’de akıcı bir sıvı ele geçer. Bu sıvı suya dökülürse sarı, saydam ve yumuşak lastik gibi kütle ele geçer. Buna amorf kükürt denir. Kükürt buharları S8 ve S6, yüksek sıcaklıkta ise S4 ve S2moleküllerinden oluşur. a ve b kükürtler 8 atomlu moleküller hâlindedir. Bulunuşu: Kükürt tabiatta çok yayılmış olarak bulunur. Bir kısmı elementel hâlde; bir kısmı ise bileşik hâlindedir. Yerküresinin % 0.052’sini teşkil eder. Elementel hâlde, Türkiye’mizde, Amerika’da, İtalya veİspanya’da bulunur. Yurdumuzdaki en mühim yatak Keçiborlu’dadır. Bileşik hâlinde en çok pirit (FeS2) halkopirit (CuFeS2), glanit (PbS), çinkoblend ZnS ve sülfatlar hâlinde bulunur. Elde edilişi: Serbest halde kükürt ihtiva eden yataklardan Kükürt-Fransh metodu ile elde edilir. Bu metodla 350 metre kadar derinlikteki kükürtler çıkarılır. Kükürt yatağına kadar içiçe geçmiş üç boru indirilir. En iç borudan basınçlı hava, dış borudan ise 160°C’de sıcak su buharı gönderilir. Buhar sıcaklığı ile eriyen kükürt basınçlı havanın sürüklemesi ile ikinci borudan yeryüzüne çıkar. Su-kükürt karışımı havuzlara alınarak bekletilir ve kükürt çöker. Bu kükürt % 99 saflıktadır. Maden kömürlerinin destilasyonu esnasında elde edilen hidrojen sülfür (H2S) oksijen ile reaksiyona sokulur ve elementel kükürt elde edilir: 2H2S+O2 ® 2H2O+2S Pirit (FeS2) de önemli bir kükürt kaynağıdır. Piritten elde edilen kükürt dioksit (SO2), hidrojen sülfür ile reaksiyona sokulursa serbest kükürt ele geçer: SO2+2H2S ® 3S+2H2O Kükürt dioksit, karbon monoksit ile reaksiyona sokulursa yine kükürt elde edilir: SO2+2CO ® S+2CO2 Bileşikleri: Kükürtün oda sıcaklığında reaksiyon verme özelliği yok gibidir. Oda sıcaklığında ancak flour ve civa ile reaksiyon verebilir. En önemli bileşiği sülfat asidi (H2SO4)dir. (Bkz. Sülfat asidi.) Kükürt dioksidin su ile reaksiyonundan sülfit asidi elde edilir: SO2+H2O ® H2SO3 Sülfit asidi organik bileşiklerin sentezinde kullanılan bir maddedir. Saman ve kumaşların ağartılmasında, kâğıt sanâyiinde beyazlatıcı olarak, metalurjide, analitik kimyâda, meyve ve yiyeceklerin saklanmasında, parafinlerin rafinasyonunda ve sülfit bileşiklerinin elde edilmesinde kullanılır. Sülfit asidi renksiz bir sıvı olup, karakteristik bir kokusu vardır. Yoğunluğu 1,03 g/cm3 olup suda çözünür. Oldukça kararsız olup hava ile okside olarak H2SO4 hâlini aldığı gibi SO2 fazlasından dolayı bozunabilir. Kükürt monoklorür (dikükürtdiklorür) çok bilinen bir kükürt halojen bileşiğidir. Formülü S2Cl2 olup bazı yağların klorlandırılmasında, mobilyada kullanılan kuruyan yağların elde edilmesinde, yağların ve kauçuğun soğuk vulkanizasyonunda, organik maddelerin klorlandırılmasında, askeriyede zehirli gaz olarak, böcek öldürücü olarak ve şekerin saflaştırılmasında kullanılır. Kükürt monoklorür erimiş kükürt içinden klor gazı geçirmek suretiyle elde edilir. Sarımsı-kırmızı renkte olup, keskin pis bir kokusu vardır. -82°C’de donar ve 138°C’de kaynar. Su ile kolayca çözünür. Organik çözücülerde de çözünür. Tiyonil klorür; kükürt oksiklorür olarak da bilinen bu bileşiğin formülü SOCl2’dir. Organik sentezlerde klorlama vasıtası olarak, A vitamininin, antihistaminiklerin, boyaların elde edilmesinde kullanılır. Renksiz veya kırmızı sıvıdır. Deriyi yakar ve su ile bozunur. Buharı da sıhhat için zararlıdır. Kükürtdioksit (SO2); renksiz, atmosferik basınçta iğneleyici, astım yapan bir gaz veya yüksek basınçta renksiz bir sıvıdır. Kükürdün havada yakılması ile elde edilir. Ayrıca metal sülfürlerin kavrulması ile, hidrojen sülfürün yakılması ile ve yağ, tabiî gaz rafinasyonunda veya gaz fabrikasyonunda yan ürün olarak elde edilir. Suda bol miktarda çözünerek sülfit asidini meydana getirir. Alkol ve eterde çözünür. 0°C’de spesifik giavitesi 1,43’tür. Sıvı SO2 elektrik akımı iletmez. Atmosfer basıncında -10°C’de kaynar. Yağların ve yiyeceklerin beyazlatılmasında, etlerin saklanmasında, kimyasal maddelerin elde edilmesinde, kâğıt îmâlatında, soğutmada ve camların tavlanmasında kullanılır. Kullanılışı: Kükürt, sanâyide hammadde olarak yaygın bir şekilde kullanılan maddelerden biridir. Meselâ Amerika’da yıllık kükürt tüketimi kişi başına 45 kg’dır. Bu oran Avrupa’da ortalama 32 kg, Hindistan’da 0,9 kg’dır. Üretilen kükürtün % 86’sı sülfat asidi îmâlâtında, bu asidin de % 47’si gübre îmâlatında kullanılır. Çelik ve petrol sanayiindeki işlemlerde, cevherden, metalleri elde etmede, kauçuk üretiminde, boyalarda, sentetik fiber üretiminde, katalizör olarak deterjan, sentetik reçine birçok organik ve anorganik maddelerin yapımında kullanılır. Zirâatte böcek ve mantar öldürmede ve radyoizotop olan S-35 birçok ilmî araştırmada kullanılır. Atom numarası: 16 Simge: S Kütle numarası: 32.064 Kaynama Noktası : 444.6 Erime Noktası : 119 Yoğunluk: 2.07 Buharlaşma Isısı: 3.01 Kaynaşma (Füzyon) Isısı: .34 Elektriksel iletkenlik: 1e-23 Isıl iletkenlik: 0.0007 Özgül Isı Kapasitesi: .175 Amonyak (NH3) Amonyak, endüstride en çok azotlu gübrelerin ve nitrik asitin üretiminde başlangıç maddesi olarak kullanılır. Laboratuarlarda zayıf baz olarak ve birçok kimyasal maddenin elde edilmesinde de kullanılır. Amonyak bilhassa nitrik asit ve amonyum tuzları imalatında, üre, boya, ilaç ve plastik gibi organik madde imalatında kullanılır. Amonyak gazı normal sıcaklıkta basınç uygulandığında kolaylıkla sıvılaşır, oluşan bu sıvının buharlaşma ısısı yüksektir (327 kcal/g ), bundan dolayı endüstride soğutucu olarak kullanılır. Özellikleri Renksiz, kendine özgü keskin kokulu, zehirli ve aşındırıcıdır. Oda sıcaklığında gaz haldedir. Düşük sıcaklıklarda alevlenme özelliği vardır. Kimyasal olarak baziktir. Normal sıcaklıkta basınç altında kolayca sıvılaşabilmektedir. Kullanım Alanları Gübre Sanayinde, Nitrik asit üretiminde başlangıç maddesi olarak Endüstriyel Soğutma sistemlerinde soğutma amaçlı Kimya sanayinde ilaç, boya, tuz, naylon ve plastik üretiminde Malzemelerin Isıl işlemlerinde Azot ve hidojen kaynağı olarak Gaz Nitrür işleminde ise parçaların yüzeyine azot emdirme amacıyla kullanılır. Bu bileşikler hangi elementlerden oluşur? -------------------------------------------------------------------------------- NH3 amonyaktır. 3 Hidrojen atomunun bir azota tutunmasıyla oluşan kendi halinde bir bileşiktir. Renksizdir, keskin kötü bir kokusu vardır bu yüzden pek sevilmez ancak yine de gübre, boya, ilaç hatta parfüm yapımında kullanmaktan vazgeçilmez. Şimdi de hem kötü kokusu var hem de nasıl parfüm yapılıyor diye sorabilirsin ama zahmet etme ben burada onu da cevaplıyorum; bazı parfüm esansları çeşitli kimyasal reaksiyonlar sonucunda üretilir. Bu reaksiyonların bazılarında amonyak kullanılabilir ancak sonuçta parfümün içinde amonyak kalmaz çünkü onu kimse sevmez. İşte böyle herkes onu kullanır ve atar, zavallı bir bileşiktir, aynı zamanda çok güçlü olmayan bir bazdır, zehirlidir, bu yüzden deterjanlara, temizleyecilere vs. katılır, yine temizlik sırasında kullanılır ve foseptik çukuruna gitmek üzere lavabo veya tuvaletten uğurlanır, arkasından da bir tas su dökülür. Su demişken, amonyak suda çözünür ve bu sulu çözeltisine amonyum hidroksit denir. SO2 kolvalent bağla bağlıdır kükürt ve 2 oksijenden oluşur LİTYUM FLORÜR(lif) Belirli bir oksidasyon veya redüksiyon yarı-reaksiyonu için “redüksiyon potansiyeli” adıyla bilinen rakamsal bir değer mevcuttur. Sembolü E° olup standart termodinamik şartlar altında (tüm gazların 25°C, 1 atm de ve tüm sulu çözeltilerin 1M konsantrasyonda olduğu) anlamına gelir ve reaksiyonun yazıldığı yönde gerçekleşme olasılığının büyüklüğünü gösterir. Birimi Volt dur.Pozitif bir redüksiyon potansiyeli değeri, ürünlerin (reaksiyonun sağ tarafındaki çıktılar) oluşumunu desteklerken, negatif bir değer reaksiyona giren maddelerin oluşumundan yanadır. Diğer bir deyişle, redüksiyon potansiyeli ne kadar negatifse, reaksiyon gerçekleşmekten o kadar uzaktır. Örneğin; Li(s) » Li+ + e- ..........Eº = 3.05 V F2 + 2 e- » 2 F- ........Eº = 2.87 V reaksiyonlarında, lityumun oksidasyonu ve florun redüksiyonu görülmektedir. Yazıldığı şekliyle her iki reaksiyon da pozitif E° değerine sahiptir ve yazıldıkları yönde gerçekleşmeleri beklenir. Aslında bu reaksiyonlar, bir oksidasyon (lityum) ve redüksiyon (flor) reaksiyonu için en yüksek potansiyel değerlerine sahiptirler.E° değerleri aynı zamanda, bir redoks reaksiyonunda hangi atomun veya molekülün elektron alacağını tahmin etmek için de kullanılabilir. Örneğin, manganez ve çinkonun oksidasyon potansiyelleri pozitiftir, her iki atomun da elektronları kolayca uzaklaştırılabilir: Zn(s) » Zn2+(**) + 2 e-...........E° = 0.763 V Mn(s) » Mn2+(**) + 2 e-.........E° = 1.18 V Redüksiyon potansiyelleri karşılaştırıldığında, manganezin elektronlarını uzaklaştırmaya çinkodan daha yatkın olduğu görülür. Kısacası, hem katı hem de iyon halinde manganez ve çinko içeren bir çözeltide, aşağıdaki yarı-reaksiyonlar oluşacaktır: Zn2+(**) + 2 e- » Zn(s)...........E° = - 0.763 V Mn(s) » Mn2+(**) + 2 e-.........E° = 1.18 V Burada çinko redüklenmek istememesine rağmen, manganez reaksiyonunun yüksek potansiyeli, çinkoyu fazla elektronları absorbe etmesi için zorlayacaktır. Zn2+(**) + Mn(s) » Zn(s) + Mn2+(**)........E° = 0.417 Bazı redüksiyon potansiyellerinin pozitif, diğerlerinin negatif olması, bu değerlerin nasıl ölçüldüğü sorusunu akla getirebilir. Redüksiyon potansiyellerinin ölçüldüğü bir “mutlak standart” yoktur. Bunun yerine, bilim dünyası, H+ iyonlarının hidrojen gazına redüksiyonuna ilişkin redüksiyon potansiyelinin 0.00 V olduğunu kabul etmiştir. 2H+ + 2e- » H2..........E° = 0.00 V Bu sistem, tüm diğer redoks reaksiyonları bu değere karşı ölçüldüğü için referans elektrodu veya standart hidrojen elektrodu olarak bilinir. Daha kuvvetli oksitleyici reaktifler (pozitif redüksiyon potansiyeline sahip olanlar) hidrojeni oksitlenmeye zorlarken, daha zayıf olanlar (negatif redüksiyon potansiyeline sahip olanlar) H+ tarafından oksitlenirler. Ancak, bu değerlerin standart şartlar için geçerli olduğu unutulmamalıdır. kaynak Lif bileşiği nedir? Alıntı: SO2 ELEMENTİ D oğada yaygın olarak bulunan genellikle sarı renkte kimyevi bir element. Kimyada sembolü S olup çok eskiden beri bilinen elementlerden biridir. Özellikleri: Periyodik cetvelde IVA grubunda bulunur. Atom numarası 16, atom ağırlığı ise 32.064’tür. 2-, 4+ ve 6+ değerliklerini alabilir. Oksijensiz bileşiklerinde kararlı olup dâimâ 2- değerliklidir. Reaksiyon verme kabiliyeti oldukça iyi olup soygazlar hâriç diğer elementlerin hepsi ile reaksiyon verir. Kütle numaraları 29 ile 38 arasında değişen dokuz izotopu vardır. Tabiatta bulunan kükürtün takribi % 95’i S-32 kararlı izotopudur. % 4’ünü S-34 kararlı izotopu teşkil eder. Diğer kararlı izotoplarının kütle numaraları ise 33 ve 36’dır. Radyoaktif izotoplardan S-29 yarılanma süresi 0.19 saniye S-35 izotopunun yarılanma süresi 88 gündür. Saf kükürt tadsız ve kokusuzdur. Karbon disülfürde ve karbon tekraklorürde çözünür, fakat suda çözünmez. Elementin erime noktası 119°C, kaynama noktası ise 444,6°C’dir. Kükürt havada 261°C’de hemen yanabilir. Isı ve elektrik iletkenliği zayıftır. Kükürtün yoğunluğu 2,07 g/cm3’tür. Sertliği mohs derecesine göre 2,5 civârındadır. Kükürtün çeşitli allotropları vardır ve bunların bazı kimyevî özellikleri birbirinden farklıdır. Bu allotroplardan en meşhuru ortorombik kristal hâlinde kükürt olup, buna a kükürt de denir ve amber rengindedir. Monoklin kristal yapıya sâhib olan b-kükürt hafif sarı renktedir. Isıtılmakla a-kükürt b-kükürt hâline dönüşebilir. b-kükürt soğutulduğu zaman tekrar a- kükürte yavaş olarak dönüşür. Daha başka kristal halleri de vardır. Bunları l-kükürt ve m-kükürttür. Kükürt ısıtılırsa, 115-120°C dolayında açık sarı renk alır. 160°C’de l -kükürt hâlini alır. 160°C’den sonra renk koyulaşır ve polimerleşme başlar. 187°C’de bütün kütle reçine gibi donar. 444,6°C’de akıcı bir sıvı ele geçer. Bu sıvı suya dökülürse sarı, saydam ve yumuşak lastik gibi kütle ele geçer. Buna amorf kükürt denir. Kükürt buharları S8 ve S6, yüksek sıcaklıkta ise S4 ve S2moleküllerinden oluşur. a ve b kükürtler 8 atomlu moleküller hâlindedir. Bulunuşu: Kükürt tabiatta çok yayılmış olarak bulunur. Bir kısmı elementel hâlde; bir kısmı ise bileşik hâlindedir. Yerküresinin % 0.052’sini teşkil eder. Elementel hâlde, Türkiye’mizde, Amerika’da, İtalya veİspanya’da bulunur. Yurdumuzdaki en mühim yatak Keçiborlu’dadır. Bileşik hâlinde en çok pirit (FeS2) halkopirit (CuFeS2), glanit (PbS), çinkoblend ZnS ve sülfatlar hâlinde bulunur. Elde edilişi: Serbest halde kükürt ihtiva eden yataklardan Kükürt-Fransh metodu ile elde edilir. Bu metodla 350 metre kadar derinlikteki kükürtler çıkarılır. Kükürt yatağına kadar içiçe geçmiş üç boru indirilir. En iç borudan basınçlı hava, dış borudan ise 160°C’de sıcak su buharı gönderilir. Buhar sıcaklığı ile eriyen kükürt basınçlı havanın sürüklemesi ile ikinci borudan yeryüzüne çıkar. Su-kükürt karışımı havuzlara alınarak bekletilir ve kükürt çöker. Bu kükürt % 99 saflıktadır. Maden kömürlerinin destilasyonu esnasında elde edilen hidrojen sülfür (H2S) oksijen ile reaksiyona sokulur ve elementel kükürt elde edilir: 2H2S+O2 ® 2H2O+2S Pirit (FeS2) de önemli bir kükürt kaynağıdır. Piritten elde edilen kükürt dioksit (SO2), hidrojen sülfür ile reaksiyona sokulursa serbest kükürt ele geçer: SO2+2H2S ® 3S+2H2O Kükürt dioksit, karbon monoksit ile reaksiyona sokulursa yine kükürt elde edilir: SO2+2CO ® S+2CO2 Bileşikleri: Kükürtün oda sıcaklığında reaksiyon verme özelliği yok gibidir. Oda sıcaklığında ancak flour ve civa ile reaksiyon verebilir. En önemli bileşiği sülfat asidi (H2SO4)dir. (Bkz. Sülfat asidi.) Kükürt dioksidin su ile reaksiyonundan sülfit asidi elde edilir: SO2+H2O ® H2SO3 Sülfit asidi organik bileşiklerin sentezinde kullanılan bir maddedir. Saman ve kumaşların ağartılmasında, kâğıt sanâyiinde beyazlatıcı olarak, metalurjide, analitik kimyâda, meyve ve yiyeceklerin saklanmasında, parafinlerin rafinasyonunda ve sülfit bileşiklerinin elde edilmesinde kullanılır. Sülfit asidi renksiz bir sıvı olup, karakteristik bir kokusu vardır. Yoğunluğu 1,03 g/cm3 olup suda çözünür. Oldukça kararsız olup hava ile okside olarak H2SO4 hâlini aldığı gibi SO2 fazlasından dolayı bozunabilir. Kükürt monoklorür (dikükürtdiklorür) çok bilinen bir kükürt halojen bileşiğidir. Formülü S2Cl2 olup bazı yağların klorlandırılmasında, mobilyada kullanılan kuruyan yağların elde edilmesinde, yağların ve kauçuğun soğuk vulkanizasyonunda, organik maddelerin klorlandırılmasında, askeriyede zehirli gaz olarak, böcek öldürücü olarak ve şekerin saflaştırılmasında kullanılır. Kükürt monoklorür erimiş kükürt içinden klor gazı geçirmek suretiyle elde edilir. Sarımsı-kırmızı renkte olup, keskin pis bir kokusu vardır. -82°C’de donar ve 138°C’de kaynar. Su ile kolayca çözünür. Organik çözücülerde de çözünür. Tiyonil klorür; kükürt oksiklorür olarak da bilinen bu bileşiğin formülü SOCl2’dir. Organik sentezlerde klorlama vasıtası olarak, A vitamininin, antihistaminiklerin, boyaların elde edilmesinde kullanılır. Renksiz veya kırmızı sıvıdır. Deriyi yakar ve su ile bozunur. Buharı da sıhhat için zararlıdır. Kükürtdioksit (SO2); renksiz, atmosferik basınçta iğneleyici, astım yapan bir gaz veya yüksek basınçta renksiz bir sıvıdır. Kükürdün havada yakılması ile elde edilir. Ayrıca metal sülfürlerin kavrulması ile, hidrojen sülfürün yakılması ile ve yağ, tabiî gaz rafinasyonunda veya gaz fabrikasyonunda yan ürün olarak elde edilir. Suda bol miktarda çözünerek sülfit asidini meydana getirir. Alkol ve eterde çözünür. 0°C’de spesifik giavitesi 1,43’tür. Sıvı SO2 elektrik akımı iletmez. Atmosfer basıncında -10°C’de kaynar. Yağların ve yiyeceklerin beyazlatılmasında, etlerin saklanmasında, kimyasal maddelerin elde edilmesinde, kâğıt îmâlatında, soğutmada ve camların tavlanmasında kullanılır. Kullanılışı: Kükürt, sanâyide hammadde olarak yaygın bir şekilde kullanılan maddelerden biridir. Meselâ Amerika’da yıllık kükürt tüketimi kişi başına 45 kg’dır. Bu oran Avrupa’da ortalama 32 kg, Hindistan’da 0,9 kg’dır. Üretilen kükürtün % 86’sı sülfat asidi îmâlâtında, bu asidin de % 47’si gübre îmâlatında kullanılır. Çelik ve petrol sanayiindeki işlemlerde, cevherden, metalleri elde etmede, kauçuk üretiminde, boyalarda, sentetik fiber üretiminde, katalizör olarak deterjan, sentetik reçine birçok organik ve anorganik maddelerin yapımında kullanılır. Zirâatte böcek ve mantar öldürmede ve radyoizotop olan S-35 birçok ilmî araştırmada kullanılır. Atom numarası: 16 Simge: S Kütle numarası: 32.064 Kaynama Noktası : 444.6 Erime Noktası : 119 Yoğunluk: 2.07 Buharlaşma Isısı: 3.01 Kaynaşma (Füzyon) Isısı: .34 Elektriksel iletkenlik: 1e-23 Isıl iletkenlik: 0.0007 Özgül Isı Kapasitesi: .175 SO2 elementi hakkında bilgi verirmisiniz? Alıntı: Amonyak (NH3) Amonyak, endüstride en çok azotlu gübrelerin ve nitrik asitin üretiminde başlangıç maddesi olarak kullanılır. Laboratuarlarda zayıf baz olarak ve birçok kimyasal maddenin elde edilmesinde de kullanılır. Amonyak bilhassa nitrik asit ve amonyum tuzları imalatında, üre, boya, ilaç ve plastik gibi organik madde imalatında kullanılır. Amonyak gazı normal sıcaklıkta basınç uygulandığında kolaylıkla sıvılaşır, oluşan bu sıvının buharlaşma ısısı yüksektir (327 kcal/g ), bundan dolayı endüstride soğutucu olarak kullanılır. Özellikleri Renksiz, kendine özgü keskin kokulu, zehirli ve aşındırıcıdır. Oda sıcaklığında gaz haldedir. Düşük sıcaklıklarda alevlenme özelliği vardır. Kimyasal olarak baziktir. Normal sıcaklıkta basınç altında kolayca sıvılaşabilmektedir. Kullanım Alanları Gübre Sanayinde, Nitrik asit üretiminde başlangıç maddesi olarak Endüstriyel Soğutma sistemlerinde soğutma amaçlı Kimya sanayinde ilaç, boya, tuz, naylon ve plastik üretiminde Malzemelerin Isıl işlemlerinde Azot ve hidojen kaynağı olarak Gaz Nitrür işleminde ise parçaların yüzeyine azot emdirme amacıyla kullanılır. |
So2 Elementi,Nh3, So2, Lif Hakkında Bilgiler,Nh3 Bileşiği Hangi Elementten Oluşur...
NH3 bileşiği hangi elementten oluşur, elementin elektron dizilişleri nasıldır?
NH3 bileşiği azot ve hidrojen elementlerinden oluşuyordur.NH3(Amonyak)bileşiğindeki atomlar arasında polar kovalent bağ vardır.Polar kovalent bağ demek farklı cins atomlardan oluşmuş moleküller demektir.Elektronegatiflikleri birbirinden farkli iki atomun olusturduğu kovalent bağlarda ortak kullanilan elektron çifti eşit olarak paylaşılmıyordur Daha fazla elektronegatif olan atom tarafindan bu elektron çifti daha çok çekilir ve böylece polar kovalent bağ oluşmuş olur. Azot elementinin atom numarası 7 dir Elektron dizilişi;N7=1S2 2S2 2P3 şeklindedir.Hidrojen atomunun ise atom numarası 1 dir H1=1S1(hidrojenin elektron dizilişi) Bu dizilişler Azotun 3 tane bağ yapabilecek elektronunun bulunduğu ve bununda hidrojen atomunun 1S1 orbitalindeki bir elektron ile 3 tane bağ yapabileceği anlamına geliyordur... Amonyak (NH3). Amonyak, endüstride en çok azotlu gübrelerin ve nitrik asitin üretiminde başlangıç maddesi olarak kullanılır. Amonyak, formulü NH3 olan; azot atomu ve hidrojen atomundan oluşan renksiz ve keskin ve hoş olmayan kokuya sahip bir gaz bileşiğidir.OH- iyonu içermediği halde zayıf baz özelliği gösterir. Gazlaşma gizli ısısı çok yüksek olduğundan sanayi tesislerinde soğutucu madde olarak da kullanılır. KİMYASAL BAĞLAR Atomlar birleştiği zaman elektron dağılımındaki değişmelerin bir sonucu olarak kimyasal bağlar meydana gelir. Üç çeşit temel bağ vardır. 1-İyonik bağlar, elektronlar bir atomdan diğerine aktarıldığı zaman meydana gelir. Tepkimeye giren elementlerden birinin atomları,elektron kaybedip pozitif yüklü iyonlara dönüşürken,diğer elementin atomları elektron kazanıp negatif yüklü iyon oluştururlar. Böylece zıt(artı-eksi) bir şekilde yüklenmiş iyonlar arasındaki elektrostatik çekim kuvveti,söz konusu iyonları bir kristal içinde tutar. 2- Kovalent bağlarda elektronlar, bir atomdan diğerine aktarılmaksızın ortaklaşa kullanılır. Tek kovalent bağ,iki atom tarafından bölünmüş yani ortaklaşa kullanılan bir elektron çiftinden ibarettir. Moleküller birbirlerine kovalent bağlarla bağlanmış atomlardan meydana gelir. 3-Metalik bağlar, metal ve alaşımlarda bulunur. Metal atomları üç boyutlu bir yapı içinde düzenlenirler. Bu atomların en dış elektronları, yapının her tarafında serbestçe dolaşır ve atomların birbirlerine bağlanmasını sağlarlar. 1 - İYONİK BAĞ Bir metal bir ametalle etkileştiği zaman elektronlar metal atomundan ametal atomuna aktarılır ve bunun sonucunda bir iyonik(veya elektrovalent) bileşik meydana gelir. Atomlardan elektron kaybıyla oluşan pozitif iyonlara katyon denir. Atomların elektron kazanarak oluşturdukları negatif iyonlar da anyon olarak isimlendirilir. Bu iyonlar bir araya getirildiklerinde bir kristal oluşturmak üzere birbirlerini çekerler. A gruplarındaki elementlerin bileşikleri çoğu kez elementlerin simgeleri ile birlikte değerlik elektronlarını gösteren noktalar kullanılarak ifade edilir. Değerlik elektronları baş grup(A grubu) elementlerinin kimyasal tepkimelerinde kullanılan elektronlardır. Örnek olarak bir sodyum atomu ile bir klor atomu arasındaki tepkimeyi ele alalım. (Şekil 1) Sodyum 1A grubunda olup sadece bir değerlik elektronuna sahiptir. Klor atomu ise 7A grubunun bir üyesi olduğundan 7 değerlik elektronuna sahiptir. Bu iki atom arasındaki tepkimede sodyum atomu 1 elektron kaybeder. Sodyum atomunun kaybetmiş olduğu elektron klor atomu tarafından kazanılır. Sodyum çekirdeği 11 proton (11+ yük) ve sodyum iyonu da yalnız 10 elektron (bir elektron kaybetmiş oluyor) içerdiğinden sodyum atomunun bir elektron kaybetmesiyle 1+ yüklü sodyum iyonu oluşur. Diğer taraftan,klor çekirdeği 17 proton (17+ yük) ve klor iyonu da 18 elektron (bir elektron kazanılmış oluyor) içerdiğinden klor atomunun bir elektron kazanmasıyla da 1- yüklü bir klorür iyonu meydana gelir. Şekil 1 : İyonik Bağ Bu tepkimede, sodyum tarafından kaybedilen elektronların toplam sayısı klor tarafından kazanılan elektronların toplam sayısına eşit olmalıdır. Böylece oluşan sodyum iyonlarının sayısı ile meydana gelen klorür iyonlarının sayısı aynı olduğundan NaCl formülü bileşikte bulunan iyonların en basit oranını (1:1) verir.Bu iyonlar bir kristal oluşturmak üzere birbirini çekerler. Sodyum klorür kristalinde bir iyonun tümüyle diğer bir iyona ait olduğu söylenemez. Aksine, kristal yapıda her bir sodyum iyonu altı klorür iyonu ile her bir klorür iyonu da altı sodyum iyonu ile çevrilmiştir. Kristal içerisinde iyonların bu şekilde düzenlenmesiyle benzer yüklü iyonların birbirlerini itmeleri, zıt yüklü iyonların birbirlerini çekmeleri tarafından bastırıldığı için net çekim kristalibir arada tutar. 2 - KOVALENT BAĞ Elektronları bağlamak için girilen yarışma, iyon bağında olduğu kadar şiddetli değilse atomların var olan dış elektronlar paylaşılır ve bir ortaklaşma bağı ya da Kovalent Bağ oluşur. Ametal atomları etkileştiği zaman kovalent bağlarda bir arada tutulan moleküller oluşur. Bu atomlar elektron çekimi bakımından birbirlerine benzediklerinden, kovalent bağların oluşması sırasında herhangi bir elektron aktarımı olmaz. Bunun yerine elektronlar ortaklaşa kullanılırlar. Kovalent bir bağ genellikle iki atom tarafından parçalanmış ters spinli bir elektron çifti içerir. Kovalent bağlar yapısına göre ikiye ayrılır: 2.a -Apolar Kovalent Bağ: Aynı cins iki ametal atomunun birleşmesiyle oluşur. Apolar kovalent bağa en iyi örneklerden biri, iki oksijen atomunun elektronlarını ortaklaşa kullanarak oluşturdukları bağıdır. (Şekil 2) Bu bağlarda ortaklaşa kullanılan elektronlar eşit paylaşıldığından dolayı molekülün pozitif veya negatif kutbu yoktur. (hidrojen), (oksijen), (klor)... Şekil 2 : Apolar Kovalent Bağ 2.b -Polar Kovalent Bağlar: İki farklı cins atomun bir araya gelmesiyle oluşur. Bu bağlarda ametallerden biri ortaklaşa kullanıldığından dolayı molekülün bir ucu pozitif (+), diğer ucu negatif (-) yüklenir. Suyu oluşturan Hidrojen ve Oksijen moleküllerinin son orbitallerindeki elektronların ortak kullanılmasıyla oluşan Polar Kovalent bağ şekil 3’de görülmektedir. (su), , (karbondioksit)... Şekil 3 : Polar Kovalent Bağ Şekil 4 : Molekülü Örnek olarak iki hidrojen atomundan oluşan bir bağ düşünülebilir. Her bir hidrojen atomu 1s orbitalinde çekirdek etrafında simetrik bir dağılım gösteren tek bir elektrona sahiptir. İki hidrojen atomu bir kovalent bağ oluşturduğu zaman atomik orbitaller öyle bir şekilde üst üste binerler ki çekirdekler arasındaki bölgede elektron bulutları birbirlerini destekleyip bu bölgedeki elektronun bulunma olasılığını arttırırlar. Pauli dışlama ilkesine göre bağı oluşturan iki elektron mutlaka ters spinli olmalıdır. Bir kovalent bağın kuvveti,pozitif yüklü çekirdek ile bağa ilişkin negatif elektron bulutu arasındaki çekimden gelir. 3 - METALİK BAĞLAR Metallerin iyonlaşma enerjileri ile elektronegatiflikleri oldukça düşüktür. Bunun sonucu olarak metal atomlarının en dış elektronları nispeten gevşek tutulur. Metalik bir kristalde, en dış elektronları çıkarılmış atomlardan ibaret olan pozitif iyonlar kristal örgüde ilgili yerlerde bulunur ve en dış elektronların örgünün her tarafında serbestçe hareket etmesiyle de kristaldeki atomlar bir arada tutulur. Diğer bir deyişle örgü içersinde dağılan ve kristalin bütününe ait olan elektron bulutu ile pozitif iyonlar arasındaki elektrostatik çekim metalik bağı oluşturmaktadır. Bant kuramı bu bağlanma şeklini, tüm kristalin her tarafını kapsayan moleküler orbitaller cinsinden açıklar. Metalik katıların çoğunda hareketlidirler. Bunun sonucu olan artı iyonlar,genişlemiş bir üçboyutlu diziliş içinde yer alırlar;ama elektronlar yöresizleşir. Bu maddelerin yüksek ısı, iletkenliği, dayanıklılık, yüksek kaynama noktası, yüksek yoğunluk, renk ve elektrik iletkenliği gibi özelliklerinin bir çoğu, hareketli elktronlardan kaynaklanır. Yalnızca birkaç iyon yığışması şeması uygulanabilir ve X ışını çözümlemesi,metal iyonlarının genişlemiş örgülü yapı içinde kazandığı bağ uzunlukları ve geometrik şekiller konusunda ayrıntılı bilgi sağlar. Basit küp biçimi şekiller, ortada başka bir iyonun bulunduğu küp biçimi şekiller ve altıgen yığışma, en sık rastlanan şekillerdir. Metal alaşımları,erimiş haldeki metallerin karıştırıldıktan sonra dikkatlice soğutulmasıyla elde edilir. Bu yolla oluşan gereçlerin özellikleri bileşenlerinin özelliklerinden genellikle çok farklıdır. 4 - VAN DER WAALS BAĞLARI Kapalı kabuklu iki kararlı molekülde ‘Van Der Waals’ güçleri ve ‘London’ güçleri adı verilen zayıf güçler aracılığıyla etkileşmeye girebilir. İki molekülün elktron bulutları etkileştiğinde zayıf bir itme ortaya çıkar; ‘Van Der Waals gücü’ adı verilen bu dengesizleştirici etkileşme sonucunda,elektron dağılımı kısa süre bozulabilir ve anlık(kalıcı olmayan) bir çift kutup momenti oluşabilir. Bu geçici çift kutuplar(London güçleri) etkileştiğinde, ‘Van Der Waals’ itmesine alt edebilen küçük çaplı bir dengesizleşme gerçekleşir ve zayıf,kimyasal olmayan bir bağ oluşur. Bu bağlanma biçimi en çok,kapalı kabuklu ender gaz atomlarının etkileşmelerinde ve küçük moleküllerin düşük sıcaklıklarda birleşimsel bağlanmasında önem taşır. Bu bağ zayıftır (gücü genellikle ortaklaşma bağının binde biri kadardır). Sıvı azot ve helyum gibi düşük sıcaklıklı kriyojenik maddelerin yada bunların daha da düşük sıcaklıktaki kat hallerinin özellikleri, bu tür zayıf etkileşmelerden kaynaklanır. 5 - HİDROJEN BAĞLARI Bazı hidrojen içeren bileşiklerde moleküller arası çekim kuvvetleri olağan üstü yüksektir. Bu çekim kuvvetleri, hidrojenin atom çapı küçük ve çok elektronegatif olan elementlere kovalent bağlı olduğu bileşiklerde görülür. Bu bileşiklerde elektronegatif element bağı elektronlarını öyle kuvvetlice çeker ki hidrojen önemli miktarda kısmi + yük kazanır. Aslında,hidrojen elementinin perdeleyici elektronları olmadığından burada hidrojen hemen hemen çıplak bir protondur. Bir molekülün hidrojen atomu ve diğer bir molekülün elektronegatif elementinde bulunan paylaşılmamış elektron çifti birbirini çekerek bir hidrojen bağı oluşturur. Her hidrojen atomu küçük boyutlu olduğundan ancak bir hidrojen bağı yapabilir. Bir çok ortaklaşma molekülünde bulunan çift kutup momentlerinin etkileşmesinin yol açtığı zayıf çekim güçleri, kararlılaşmaya ve birleşimsel bağlanmaya neden olabilir. Su(H O) yada amonyak(NH ) gibi moleküllerdeki hidrojen atomları ikinci bir bileşikte bulunan oksijen yada azot atomlarının üstündeki yalnız elektron çiftleri gibi eksi yüklü bir merkezle etkileşmeye girebilirler. Etkileşme enerjileri,tipik olarak,bir ortaklaşma bağının enerjisinin yalnızca %5’i kadardır;ama bir çok fiziksel ve kimyasal süreç açısından çok önemlidir. Söz gelimi,suyun ve buzun yapısı ‘hidrojen bağı’ denilen bu bağların karışık etkileşmelerin sonucudur. Buz, gerçekte sıcaklığa ve uygulanan basınca bağlı olarak bir çok farklı billur yapısı oluşturur; bu çeşitlilik karmaşık hidrojen bağı şekillerinin farklı biçimlerde düzenlenebilmesinden ileri gelir. Çoğunlukla biokimyasal sistemlerin yapıları da kısmen hidrojen bağı etkileşmelerinin sonucu olarak belirlenir; bu, DNA’da özellikle belirgindir. Ortaklaşma bağıyla bağlanmış bir çok kutupsal bileşiğin erime ve kaynama noktaları hidrojen bağlarını kırmak için ek enerji gerektiğinden anormal derecede yüksektir. Kaynaklar: 1 – Modern Üniversite Kimyası: C.E. MORTİMER Çevirenler: Prof. Dr. T. ALTINATA - Prof. Dr. H. AKÇAY Prof. Dr. H. ANIL 2 – GROLIER INTERNATIONAL AMERİCANA Ansiklopedisi 3 – Temel BRITANICA Ansiklopedisi 4 – Gelişim Hachette Ansiklopedisi 5 – İlköğretim Fen Bilgisi kitabı 8 - Kaya yayınları Aytekin KAYA - Recep Yüksel - Zeki TURAN 6 – Lise 1 Kimya Ders Kitabı – Oran Yayıncılık |
Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.