![]() |
Dik Üçgenin Özellikleri
Dik Üçgenin Özellikleri Bir açısının ölçüsü 90° olan üçgene dik üçgen denir. Dik üçgende 90° nin karşısındaki kenara hipotenüs, diğer kenarlara dik kenar adı verilir. Hipotenüs üçgenin daima en uzun kenarıdır. şekilde, m(A) = 90° [BC] kenarı hipotenüs [AB] ve [AC] kenarları dik kenarlardır. PİSAGOR BAĞINTISI Dik üçgende dik kenarların uzunluklarının kareleri toplamı hipotenüsün uzunluğunun karesine eşittir. ABC üçgeninde m(A) = 90 a2=b2+c2 ÖZEL DİK ÜÇGENLER 1. (3 - 4 - 5) Üçgeni Kenar uzunlukları (3 - 4 - 5) sayıları veya bunların katı olan bütün üçgenler dik üçgendir. (6 - 8 - 10), (9 - 12 - 15), … gibi 2. (5 - 12 - 13) Üçgeni Kenar uzunlukları (5 - 12 - 13) sayıları ve bunların katı olan bütün üçgenler dik üçgenlerdir. (10 - 24 - 26), (15 - 36 - 39), … gibi. Kenar uzunlukları 8, 15, 17 sayıları ile orantılı olan üçgenler dik üçgenlerdir. Kenar uzunlukları 7, 24, 25 sayıları ile orantılı olan üçgenler dik üçgenlerdir. 3. İkizkenar dik üçgen ABC dik üçgen |AB| = |BC| = a |AC| = aÖ2 m(A) = m(C) = 45° İkizkenar dik üçgende hipotenüs dik kenarların Ö2 katıdır. 4. (30° – 60° – 90°) Üçgeni ABC eşkenar üçgeni yükseklikle ikiye bölündüğünde ABH ve ACH (30° - 60° - 90°) üçgenleri elde edilir. |AB| = |AC| = a |BH| = |HC| = pisagordan (30° - 60° - 90°) dik üçgeninde; 30°'nin karşısındaki kenar hipotenüsün yarısına eşittir. 60° nin karşısındaki kenar, 30° nin karşısındaki kenarın Ö3 katıdır. 5. (30° - 30° - 120°) Üçgeni (30° - 30° - 120°) üçgeninde 30° lik açıların karşılarındaki kenarlara a dersek 120° lik açının karşısındaki kenar aÖ3 olur. 6. (15° - 75° - 90°) Üçgeni (15° - 75° - 90°) üçgeninde hipotenüse ait yükseklik |AH| = h dersek, hipotenüs |BC| = 4h olur. Hipotenüs kendisine ait yüksekliğin dört katıdır. ÖKLİT BAĞINTILARI Dik üçgenlerde hipotenüse ait yüksekliğin verildiği durumlarda benzerlikten kaynaklanan öklit bağıntıları kullanılır. 1. Yüksekliğin hipotenüste ayırdığı parçaların çarpımı yüksekliğin karesine eşittir. h2 = p.k2.b2 = k.ac2 = p.a 3. ABC üçgeninin alanını iki farklı şekilde yazıp eşitlediğimizde a.h =b.c
|
Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.