ForumSinsi - 2006 Yılından Beri

ForumSinsi - 2006 Yılından Beri (http://forumsinsi.com/index.php)
-   Matematik / Geometri (http://forumsinsi.com/forumdisplay.php?f=660)
-   -   Asal Sayılar... (http://forumsinsi.com/showthread.php?t=124482)

Prof. Dr. Sinsi 06-22-2012 12:12 AM

Asal Sayılar...
 
Asal Sayılar


Birden ve kendisinden başka sayıya bölünmeyen sayılara asal sayı denir . Örneğin 17 asaldır, çünkü 1 ve 17?den başka sayıya (tam olarak) bölünmez. Öte yandan 35 asal değildir, 5?e ve 7?ye bölünür. Teknik nedenlerden 1 asal kabul edilmez.

100?den küçük asalları bulmak pek zor değildir. İşte o asallar: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. Demek ki 100?den küçük 25 tane asal varmış. Yani 100?den küçük rastgele seçilmiş bir sayının asal olma olasılığı 1/4?tür.

Matematiksel kanıtlar arasında bir güzellik yarışması yapılsa, Öklid?in (MÖ. 300) ?sonsuz tane asal sayı vardır? önermesinin kanıtı hiç kuşkusuz ilk on sırada yer alırdı. Bu teorem Öklid?in ünlü Öğeler adlı yapıtının dokuzuncu cildinde kanıtlanır. Öklid?in teoreminin güzelliğinin göklere çıkarılmadığı ve kanıtlanmadığı popüler matematik kitabı yok gibidir. Birazdan bu güzel teoremi ? ve çok daha fazlasını ? kanıtlayacağız.

Bir sayının asal olup olmadığını nasıl anlarız? Sayımıza n diyelim. n?yi n?den küçük sayılara bölmeye çalışalım. Eğer n?den küçük, 1?den büyük bir sayı n?yi tam bölüyorsa, n, tanımı gereği, asal olamaz. Öyle bir sayı bulamazsak, n asaldır.

Ne var ki bu yöntemle büyük sayıların asallığına karar vermek çok zaman alır. Bu yöntem ve çeşitlemeleri dışında bir sayının asallığına karar verebilecek genel bir yöntem de bilinmemektedir. Örneğin, şu çeşitleme düşünülebilir: n?yi n?den küçük her sayıya böleceğimize, n?yi n?den küçük sayılara bölmeye çalışabiliriz. Çünkü n = ab ve a  n ise, b  n?dir. Dolayısıyla n asal değilse, n?den küçük bir sayıya bölünür. Böylece yapmamız gereken bölme sayısı azalır. Bir başka kolaylık da şöyle sağlanabilir: n?nin asal olup olmadığına karar vermek için n?yi n?den küçük her sayıya bölmeye çalışacağımıza, n?den küçük asallara bölmeye çalışmamız yeterlidir. Bu birazdan kanıtlayacağımız birinci teoremden çıkar. Böylece, n?nin asallığına karar vermek için yapmamız gereken bölme sayısı daha da azalır. Öte yandan bu yöntemi kullanabilmek için n?den küçük asalları bilmek gerekir. Bu asalları bildiğimizi varsaysak bile, bölme sayısı gene de büyük sayılar için çok fazladır. Örneğin, n = 100.000.000.001?in asal olup olmadığını anlamaya çalıştığımızı varsayalım bir an. Eğer n asal değilse ve küçük bir asala (örneğin 97?ye) bölünebiliyorsa, n?nin asal olmadığına oldukça çabuk karar veririz. Ama ya n asalsa ya da küçük bir asala bölünmüyorsa? Onbinlerce bölme işlemi yapmamız gerekecek.

Yukarda açıkladığımız yöntem Yunanlı matematikçi Eratosthenes tarafından M.Ö. 3. yüzyılda bulunmuştur. Bu yöntemle 50 rakamlı bir sayının en gelişmiş bilgisayar yardımıyla asal olup olmadığını anlamak trilyonlarca yıl alır. Yaşam gerçekten kısa!

Bazı özel sayıların asallığına karar vermek için özel yöntemler geliştirilebilir.


Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.