ForumSinsi - 2006 Yılından Beri

ForumSinsi - 2006 Yılından Beri (http://forumsinsi.com/index.php)
-   Matematik / Geometri (http://forumsinsi.com/forumdisplay.php?f=660)
-   -   Matematikte Üslü İfadeler - Üslü İfadelerde Örnekli Çözüm Ve Anlatım (http://forumsinsi.com/showthread.php?t=1073006)

Prof. Dr. Sinsi 12-19-2012 08:22 AM

Matematikte Üslü İfadeler - Üslü İfadelerde Örnekli Çözüm Ve Anlatım
 

TANIM: : a bir reel gerçel sayı ve nÎZ+ olsun. a.a.a...a=an olacak şekilde, n tane a’nın çarpımı olan an e üslü ifadeler denir.

Örnek/ a) 3.3.3.3=34 b) c)

UYARI :8 a bir reel sayı ve nÎZ+ olmak üzere a+a+a+...+a = n.a olduğu için an ile n.a ifadeleri birbirine karıştırılmamalıdır. Yani an ¹ n.a dır.

Örnek / 2+2+2+2+2 = 5.2 olup aynı şekilde 2.2.2.2.2 = 25 olduğuna dikkat edilmelidir.

Not : 1-) a¹0 olmak şartıyla a0 = 1 dir.

2-) 00 = ifadesi tanımsızdır.

3-) 1n = 1 dir (nÎIR)

Örnek/ a) 80 =1 b) c) ( bu gibi örneklerde parantez içinin bilinmesi gerekir.) d) 115 =1 e) 1-15 = 1 f)

---------------Üssün Üssü--------------------

Tanım8 Bir üslü ifadenin üssü üslerin çarpımına eşittir. Kural

Örnek/ a) ( 52)3 = 52.3 =56 b) c)

Not / 1- şeklindeki bir yazılım ifadesi yanlıştır. Çünkü n sayısının; m nin üssümü yoksa am nin üssümü olduğu belli değildir.

2- dir. Üslerin parantezlerle neyin üssü olduğu belirtilmelidir.

Örnek / olduğunu gösterin.

a) = 32.3 =36 = 729

b) = 32.2.2 = 38 =6561

Sonuç : a ve b değerlerinden yukarıda verilen eşitsizliğin doruluğu görülmüştür.

-------------------------Negatif Üs Kavramı-----------------

Tanım 8 a bir reel sayı olmak üzere dir. Benzer şekilde a¹0 ve b¹0 olmak üzere

Örnek / 5-1 + 5-2 = ?=

Örnek /

------------------------Bir Reel Sayının Üssü-------------------

Tanm8 Pozitif sayıların bütün kuvvetleri pozitiftir. Kural a > 0 Þ an > 0 dır.

Örnek / a) 42 = 16 > 0 b) 4-2 = c) 40 = 1 > 0

Tanım : 1- Negatif sayıların Çift Kuvvetleri Pozitiftir. Kural a < 0 ve n bir çift sayı ise an > 0

Tanım : 2- Negatif sayıların Tek Kuvvetleri Negatiftir.Kural a < 0 ve n bir tek sayı ise an < 0

Örnek / 1- (-4)2 = 16 > 0

Örnek / 2- (-4)3 = -64 < 0

Not 8 a > 0 ve n bir çift sayı ise (-a)n ¹ -an eşitsizliği doğrudur.

Örnek / 1- (-2)4 ¹ -24 Çünkü (-2)4 = (+16) ve –24 = -2.2.2.2= -16

Örnek / 2- (-5)3 + (-53) = (- 125) + (-125) = (-250)

Örnek / 3- (-5)4 + (-54) = (+625) + (-625) = 0

Örnek / 4- (-3)3 + (-52) + (-4)2 = (-27) + (-25) + (+16) = (-36)

---------------------Üslü İfadelerde Dört İşlem-------------------

1- Toplama ve Çıkarma İşlemi

Tanım : Üslü ifadelerde toplama ve çıkarma işleminin yapılabilmesi için benzer terimlerin üs ve tabanlarının aynı olması gerekir

Kural :4 a.Xn b.Xn = (a b).Xn

Örnek / 1- 5.103 + 2.103 = (5+2).103

Örnek / 1- 5.103 - 2.103 = (5-2).103

Not8 m ¹ n ise am an işlemi bu haliyle yapılamaz.

Örnek / 105 + 104 = işleminde 5 4 olup düzenleme yaparak işlem tamamlanır.

1.105 = 10.104

Burdan 10.104 + 1.104 = (10+1). 104

Örnek / 55 + 54 = 5.54 + 54 = (5+1). 54

2- Çarpma ve Bölme İşlemi

Tanım: Bir üslü ifadede Çarpma ve Bölme İşleminin yapılabilmesi için benzer terimlerin tabanlarının ayını olması gerekir.

Kural 8/ 1- (a.Xm) .(b.Xn) = (a.b).Xm+n

Kural 8 2- (a.Xm) ¸ (b.Xn) = (a¸b).Xm-n veya

Örnek / (2.52 ) . (3.54) = 2.3.52+4 =6.56

Örnek / (8.36) ¸ (4.32) =

Örnek /

Örnek / 15a = 3a-2 olduğuna göre 5a nın değerini bulalım.

15a = 3a-2 = (3.5)a = şeklinde yazılırsa

15a = 3a-2 = (3.5)a =

= 3a.5a =

= 32 . 3a.5 a = 3a

= 9.5a =

= 9.5a = 1

= 5a=

------------------Üslü Denklemler--------------------

1- Tabanları Eşit Olan Denklemler:

KURAL:8 Tabanları eşit olan üslü denklemlerin üsleri de eşittir.

a ¹ 0, a ¹ -1, a ¹ 1 olmak üzere am = an Þ m=n dir

ÖRNEK/ 1- 2x = 25 Þ x=5 tir.

2- 3x = 81 Þ 3x= 34 Þ x=4 tür.

3- 2x+8 = 8 olduğuna göre, x=?

2x+8 = 2x . 28 olup

2x . 28 = 8 yerine konur ise, burdan 8 = 23 olup

2x . 28 = 23

2x = 23¸ 28

2x = 23-8

2x = 2-5 olup burdan x = -5 bulunur.

ÖRNEK / eşitliğini sağlayan x değerini bulalım.

ÇÖZÜM / 5x+1-(2-x) = (53)x-3

5x+1-2+x= 53(x-3)

52x-1= 53x-9 (Tabanlar eşit olup üsler eşit olmalıdır.)

2x-1 = 3x-9

2x –3x = -9+1

-x = -8

x = 8

2- Üsleri eşit olan denklemler:

KURAL 8 Üsleri eşit olan denklemlerde üs tek sayı ise tabanları eşit, üs çift sayı ise tabanlar eşit yada biri diğerinin ters işaretlisine eşittir.

n tek sayı ve an = bn Þ a=b dir.

n çift sıyı ve an = bn Þ a=b veya a = -b dir.

ÖRNEK/ 1- x3=53Þ x=5 tir.

2- (x+7)3=(3x-11)3 eşitliğini sağlayan x değerini bulalım.

Çözüm: 3=3 yani üsler eşit olduğundan tabanlarda eşit olmak zorundadır. Burdan,

(x+7) = (3x-11) olup parantezleri açalım

x+7 = 3x-11

7+11= 3x-x

18 = 2x

x =

x = 9

ÖRNEK / (2X+3)4= (X-2)4 eşitliğini sağlayan x değerlerini bulalım.

ÇÖZÜM / 4çift sayı olduğu için

(2x+3)4= (X-2)4 Þ

2x+3= x-2 Veya 2x+3= -(x-2)

2x-x= -2-3 Veya 2x+3= -x+2

x=5 Veya 2x+x= 2-3

3x = -1

x=

KURAL 8 xn = 1 şeklinde olan denklemler.

Bu tür denklemlerin çözümünde 3 durum vardır.

Xn = 1 Þ

ÖRNEK / 1- 18 = 1 dir. Çünkü 1 in tüm reel kuvvetleri 1 dir.

2- 50 = 1 dir. Çünkü 0 dışındaki tüm reel sayıların 0 ıncı kuvvetleri 1 dir.

3- (-1)6 = 1 dir. Çünkü (-1) in tüm çift kuvvetleri 1 dir.

4- 53x-15 = 1 ise x=?

Çözüm: 53x-15 = 1 ise

3x-15 = 0 olmalıdır,burdan

3x = 15

x = 15¸3

x =

ÖRNEK / (5x+3)7 = 1 ise x değerini hesaplayın.

ÇÖZÜM: (5x+3)7 = 17 (17=1 olup ) Burdan bu eşitliğin tabanları eşit olmalıdır.

(5x+3) = 1

5x+3 = 1

5x = 1-3

5x = -2

x =

ÖRNEK / (x+3)x-2= 1 eşitliğini sağlayan x değerini bulalım.

ÇÖZÜM / 1. DURUM..: x+3=1Þx=1-3

x=-2------(ª)

2. DURUM..: x-2=0--.--(ª)

x=2-------(ª) Bu kök üssü sıfır yapmadığı için alınır.

3. DURUM...: X+3= -1

x=-4------(ª) Bu kök yazıldığında üs çift sayı olacağı için, bu kök de alınır. O halde denklemi sağlayan x değerleri : -4 , -2 , 2 dir.

ÖRNEK / işleminin sonucunu üslü ifade olarak yazalım.

ÇÖZÜM / = 6.10x

=3.5x

=

=2.2x

=21 . 2x

=21+x


Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.