![]() |
İraksak Seri Nedir?
Harmonik serinin ıraksak olduğu Orta Çağ matematikçisi Nicole Oresme tarafından kanıtlanmıştır. Özelleşmiş matematiksel yöntemler, kısmi toplamlar serisi ıraksayan belli serilere değerler atamaktadır. Toplam yöntemi, serinin kısmi toplamlar kümesinden değerlere tanımlı bir parçalı işlevdir. Örneğin, Cesàro toplamı Grandi ıraksak serisine 1/2 değerini atamaktadır. Kısmi toplamların aritmetik ortalamasına dayanan Cesàro toplamı ortalayıcı bir yöntemdir. Diğer yöntemler ise serinin çözümlemeli sürekliliğini göz önüne almaktadır. Fizik bu tür farklı toplam yöntemlerinin en sık kullanıldığı bilim dalıdır. 1. Iraksak seri toplam yöntemleri Bir M toplam yöntemi tüm yakınsak serilerin limit değerleriyle koşutluk gösteriyorsa düzenlidir. Bu sonuç Abel kuramı olarak adlandırılır. Alfred Tauber tarafından bulunan ve bu kurama kısmen karşıt sonuçlar üreten Tauber kuramları ise daha çok ilgi çekmektedir. Buradaki kısmen karşıt terimi, M'nin Σ serisini toplayabildiğinde Σ'nın yakınsak olması gerektiğini belirtmektedir. Iraksak bir serinin toplamına değer atayabilen yöntemler doğrusaldır. Bu sonuç, yöntemin sınırlı kısmi toplamlara sahip olan serileri toplayabilecek biçimde geliştirilebilmesini öngören Hahn-Banach kuramından çıkarılmaktadır. Bu olgu uygulamada çok yararlı değildir. Bunun nedeni, birbirleriyle tutarsız yöntemlerin çokluğu ve bu yöntemlerin gerçekte var olduklarını kanıtlamanın seçme beliti ya da Zorn önermesi gibi yöntemler kullanmayı gerektirmesidir. Iraksak serilerin matematiksel çözümlemedeki kullanım alanı Abel toplamı, Cesàro toplamı ve Borel toplamı gibi somut ve doğal yöntemler ve bunlar arasındaki ilişkilerdir. Wiener'in Tauber kuramı bu alanda bir milat olmuş ve Fourier çözümlemesindeki Banach cebiri yöntemleri üzerinde beklenmeyen bazı düzeltmeler yapmıştır. Iraksak seri toplam yöntemleri ekstrapolasyon ve seri dönüşümü yöntemleriyle de ilintilidir. Padé yaklaşıkları, Levin seri dönüşümleri ve nicem mekaniğindeki düzensizlik kuramını düzeltme yöntemlerine ilişkin düzeye bağlı eşlemeler bu yöntemlere örnek olarak gösterilebilir. 2. Toplam yöntemlerinin özellikleri Toplam yöntemleri genellikle serinin kısmi toplamlar kümesine odaklanmaktadır. Bu seri her ne kadar yakınsamıyorsa da, serinin ilk terimlerinin ortalaması alınarak limit hesaplaması gerekliliği ortadan kaldırılabilmektedir.a = a0 + a1 + a2 + ... ifadesini hesaplayabilmek için öncelikle s serisi bulunmalıdır. Bu seri, s0 = a0 ve sn+1 = sn + an eşitliklerini sağlar. Yakınsak seriler için s, a limitine yaklaşmaktadır. Toplam yöntemi, kısmi toplamlar serisinden değerlere tanımlı bir işlev olarak görülebilir. A, bir seri kümesine değer atayabilen bir toplam yöntemi ise bu, karşılık gelen tüm serilere değer atayabilen bir seri toplam yöntemine dönüştürülebilir. Bu yöntemlerin belirli limit ve toplam değerlerine karşılık gelebilmeleri için sahip olmaları gereken bazı özellikler bulunmaktadır. [*]Düzenlilik: s serisi x'e yakınsarken A(s) = x koşulu sağlanıyorsa bu toplam yöntemi düzenlidir. Buna karşılık gelen seri toplam yöntemi de AΣ(a) = x sonucuna ulaşmaktadır.[*]Doğrusallık: A, seri üzerinde tanımlı olduğu noktalarda doğrusal ise bu yöntem doğrusaldır. Bu, A(r + s) = A(r) + A(s) ve k bir sayı (gerçel ya da karmaşık) olmak koşuluyla A(ks) = k A(s) eşitliklerinin sağlanması anlamına gelmektedir. a serisinin an = sn+1 − sn terimleri s serisi üzerinde doğrusal olduklarından AΣ, seri terimleri üzerinde doğrusaldır.[*]Kararlılık: s, s0 ile başlayan bir seriyse ve s′n = sn+1 − s0 koşulu sağlanıyorsa A(s) ancak ve ancak A(s′)'nin tanımlı olması durumunda tanımlıdır ve A(s) = s0 + A(s′) eşitliği sağlanır. Başka bir deyişle, a′n = an+1 koşulu tüm n değerleri için sağlanıyorsa AΣ(a) = a0 + AΣ(a′) eşitliği elde edilir. Üçüncü koşul daha az önem taşımaktadır. Borel toplamı gibi bazı önemli yöntemler bu koşula sahip değillerdir. A ve B gibi iki farklı toplam yönteminde ortak olarak bulunması yeğlenen özellik tutarlılıktır. A ve B'nin değer atadığı her s serisi için A(s) = B(s) koşulu sağlanıyorsa bu yöntemler tutarlıdır. İki yöntem tutarlıysa ve bunlardan biri diğerinden daha çok sayıda seriyi toplayabiliyorsa o yöntem diğerinden güçlüdür. 3. Belitsel yöntemler Düzenlilik, doğrusallık ve tutarlılık birer belit olarak tanımlandığında birçok ıraksak seriyi temel cebirsel ifade değişiklikleriyle toplamak olanaklıdır. Örneğin, r ≠ 1 olmak koşuluyla 3690a061bd2f71883f81a82fc89e2c19.png geometrik serisi yakınsak olup olmadığına bakılmaksızın toplanabilir. Bu özelliklere sahip olan ve geometrik serilere değer atayabilen toplam yöntemleri bu seriye de değer atayabilmelidirler. Ne var ki, r'nin 1'den büyük bir gerçel sayı olması durumunda kısmi toplamlar sınır tanımaksızın artmakta ve ortalamaya dayanan yöntemler ∞ limit göstermektedirler. 4. Nörlund ortalamaları pn'nin pozitif terimlerden oluşan ve p0'dan başlayan bir seri olduğu varsayılsın. Ayrıca, 440454e7935ef20cd1400821416d9d2b.png koşulu da sağlanmış olsun. Bir s serisi p cinsinden ağırlıklı ortalamalar verecek biçimde düzenlenirse 907a9ca05027b3c813e177da5c9228f4.png n sonsuza giderken tn'nin limiti Nörlund ortalaması (Np(s)) olarak adlandırılan ortalama değere eşit olur. Nörlund ortalaması düzenli, doğrusal ve kararlı olmasının yanı sıra iki Nörlund ortalaması tutarlıdır. Nörlund ortalamalarının en önemlileri kuşkusuz Cesàro toplamlarıdır. pk serisi 77552601e3bd1e85c77872754f0bdb90.png olarak tanımlandığında Cesàro toplamı Ck, Ck(s) = N(pk)(s) koşulunu sağlamaktadır. k ≥ 0 ise Cesàro toplamları Nörlund ortalamalarıdır. C0 olağan toplamayı, C1 ise olağan Cesàro toplamını göstermektedir. h > k koşulu sağlanıyorsa Ch Ck'den güçlüdür. 5. Abel ortalamaları λ = {λ0, λ1, λ2, ...} sonsuza yönelen artan bir seri olsun ve λ0 ≥ 0 koşulunun sağlandığı varsayılsın. abab9b2ad32f5d4f77e4d3cecc38bd24.png toplamı tüm x pozitif gerçel sayıları için yakınsıyorsa Abel ortalaması Aλ 0c2d296c69029f1c8daed62c80fd1c70.png biçiminde ifade edilebilir. Bu tür seriler genel Dirichlet serileri olarak adlandırılır. Fiziksel uygulamalarda ise ısı-öz düzenlemesi adını alırlar. Abel ortalamaları düzenli, doğrusal ve kararlıdırlar ancak farklı λ değerleri için tutarlı değillerdir. Buna karşın, bazı özel durumlar önemli toplam yöntemleri oluşturmaktadır. 5.1. Abel toplamı λn = n koşulu sağlandığında Abel toplamına ulaşılmaktadır. 4f7d7f327306c97aec59da45e6e7f937.png Burada z = exp(−x) eşitliği sağlanmaktadır. Böylece, x pozitif gerçel sayılardan 0'a yaklaşırken ?(x)'in limiti, z 1'e aşağıdan yaklaşırken ?(z)'nin limitine eşit olur. Bu durumda Abel toplamı A(s) 51045f31351e4396d9f4346efa0310ac.png biçiminde tanımlanır. Abel toplamı Cesàro toplamı ile tutarlıdır ancak ondan güçlüdür. Ck(s)'nin tanımlı olduğu tüm noktalarda A(s) = Ck(s) eşitliği sağlanmaktadır. 5.2. Lindelöf toplamı λn = n ln(n) koşulu sağlanıyorsa 26ccce1c208d8ebc34bc37781cb54f94.png eşitliğine ulaşılır. Lindelöf toplamı (L(s)), x sıfıra giderken ?(x)'in limitine eşittir. Birçok uygulama alanı bulunan bu yöntem Mittag-Leffler yıldızındaki güçlü serileri toplayabilmesiyle ünlüdür. g(z) sıfır çevresinde analitik ise ve bir Maclaurin serisine sahipse Mittag-Leffler yıldızında L(G(z)) = g(z) eşitliği sağlanır. |
Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.