ForumSinsi - 2006 Yılından Beri

ForumSinsi - 2006 Yılından Beri (http://forumsinsi.com/index.php)
-   Matematik / Geometri (http://forumsinsi.com/forumdisplay.php?f=660)
-   -   Doğrusal Cebir Nedir ? (http://forumsinsi.com/showthread.php?t=1010629)

Prof. Dr. Sinsi 10-29-2012 09:50 AM

Doğrusal Cebir Nedir ?
 
Doğrusal cebir

Boşuzay (Dizey)
Cauchy-Schwarz eşitsizliği
Determinant
Doğrusal denklem dizgesi
Dönüşümçarpanı
Hilbert uzayı
Jakobi özdeşliği
Matris (matematik)
Nokta çarpım
Sayıl alan
Sıfır noktası
Simetrik matris
Tersçapraz
Transpoz
Vektör
İlkköşegen toplamı

Doğrusal cebir
Matematiğin, yöneyler (vektör), yöney uzayları, doğrusal dönüşümler, doğrusal denklem takımları ve dizeyleri (matris) inceleyen alanıdır. Yöney uzayları, modern matematiğin merkezinde yer alan bir konudur. Bundan dolayı doğrusal cebir hem soyut cebirde hem de fonksiyonel analizde sıkça kullanılır. Doğrusal cebir, analitik geometri ile de alakalı olup sosyal bilimlerde ve fen bilimlerinde yaygın bir uygulama alanına sahiptir.

Modern doğrusal cebirin geçmişi 1843 ve 1844 yıllarına dayanır. 1843'te William Rowen Hamilton Kuaterniyonları keşfetti. 1844'te Hermann Grassmann Die lineale Ausdehnungslehre adlı kitabını yayınladı. Arthur Cayley, doğrusal cebirin en temel fikirlerinden birisi olan dizeyleri 1857 yılında tanıttı. Ne var ki doğrusal cebir, asıl büyük atılımlarını 20. yüzyılda yapmıştır.

Temelleri
Doğrusal cebirin temelleri yöneylerin incelenmesinde yatar. Burda sözü edilen yöney, yönü ve büyüklüğü olan bir doğru parçasıdır. Yöneyler vektör olarakta bilinir. Yöneyler kuvvet gibi fiziksel birimlerin ifade edilmesinde kullanılabilir. Birbirlerine eklenebildikleri gibi sabit bir skalerle de çarpılabilirler. Böylece basit bir reel yöney uzayının oluşumu gösterilebilir.

Modern Doğrusal Cebir, 2 ve 3 boyut sınırlamasını kaldırarak isteğe bağlı veya sonsuz boyutlu uzaylarda işleyebilecek şekilde genişletilmiştir. 2 ve 3 boyutlu uzaylardaki sonuçların büyük bir kısmı n-boyutlu uzaylarda da geçerlidir. N boyutlu bir uzayın görselleştirilmesi zor gibi görünse de aslında bu tür uzaylar temel bilimlerde ve günlük hayatta sık kullanılır. Örneğin 8 ülkenin ulusal gelirini listelediğimiz zaman bu liste 8 boyutlu bir vektörü ifade eder. Bu vektördeki herbir elemanın bir ülkenin ulusal gelirini temsil ettiğini söyleyebiliriz.

Matematikte, soruna doğrusal bir açıdan bakıp, dizey cebiriyle ifade ettikten sonra onu dizey işlemleriyle çözmek, matematikte sık kullanılan uygulamalardan birisidir. Örneğin doğrusal denklem dizgeleri (sistem) matris yardımıyla ifade edilip çözülerek denklemin kökleri elde edilebilir.

Yöneyler ve Dizeyler

Aşağıda üç boyutlu bir sütun yöneyi görülmektedir:

Burada ise 4 boyutlu bir satır yöneyini görmekteyiz:

Son olarak 4 satır ve üç sutundan oluşan bir dizey örneğini şöyle gösterebiliriz:


Prof. Dr. Sinsi 10-29-2012 09:50 AM

Doğrusal Cebir Nedir ?
 
Boşuzay (Dizey)

Doğrusal cebirde, bir M dizeyin boşuzayı (kernel, null space) Mx=0 bağıntısını sağlayacak şekilde x yöneylerinin oluşturduğu kümedir. Bir M dizeyinin boşuzay boyutu M dizeyine çarpıldığında sıfır sonucunu veren birbirinden bağımsız x yöneylerine göre hesaplanır.

Tanım

m × n boyutlarına sahip bir M dizeyinin boşuzay kümesi aşağıdaki şekilde gösterilir:

burada 0, m bileşenli bir sıfır yöneyine karşılık gelmektedir. Mx = 0 şeklindeki dizey denklemi aşağıdaki türdeş denklemler sistemi ile ayrı ayrı yazılabilir:

M dizeyinin boşuzayı yukarıdaki denklem sisteminin çözümü ile elde edilir.

Örnek

Aşağıdaki M dizeyini düşünelim

Bu M dizeyinin boşuzayını bulmak için, (x, y, z) ∈ R3 üç boyutlu x-y-z uzayında aşağıdaki yazımı kullanabiliriz

Yukardaki denklemi x, y ve z cinsinden aşağıdaki gibi ayrı ayrı yazabiliriz:

Yukarıdaki denlemler çözüldüğünde

çözüm sistemi bulunur. Çözülen denklemler iki tane ve bilinmeyen üç tane olduğundan, c çarpanı herhangi birşey olmak üzere yukarıdaki gösterim çözümleri gösterir.

Prof. Dr. Sinsi 10-29-2012 09:51 AM

Doğrusal Cebir Nedir ?
 
Cauchy-Schwarz eşitsizliği
Cauchy-Schwarz eşitsizliği (bazen Schwarz eşitsizliği veya Cauchy eşitsizliği veya Cauchy-Schwarz-Bunyakovski eşitsizliği olarak anılıp) Matematik bilimi teorisinde önemli bir eşitsizlik olup, cok onemli matematiksel uygulamalarda da kullanılmaktadır. Bunlar arasında vektörlere uygulanan lineer cebirde, sonzuz seriler ve çarpımların entegrasyonu uygulanmasinda matematik analizde ve varyans ve kovaryans uygulaması icin istatistik ve olasilik kurami'nda bu esitsizlik ok kullanılmaktadır.

Toplamlar için bu eşitsizlik ilk defa Augustin Louis Cauchy tarafindan 1821de ve entegraller için ise bu eşitsizlik ilk defa Viktor Yakovlevich Bunyakovsky tarafından 1850da ve sonra tekrar olarak Hermann Amandus Schwarz tarafından 1888de ortaya atılmıştır

Cauchy-Schwarz eşitsizliğine göre bir reel içsel çarpım uzayında veya kompleks bulunan tüm x ve y vektörler için şu ifade geçerlidir:

Bu ifadenin her iki tarafının da karekökü alınırsa ifade vektörlerin normları kullanılarak ayni özdeş şekilde yeni bir ifade ile şöyle yazılır:

Buna ek olarak ifadenin iki tarafının birbirine eşit olması ancak ve ancak x ve y vektörleri birbirlerine lineer olarak bağımlı olmaları halinde (yani geometrik açıklama ile birbirlerine paralel oldukları veya her iki vektörün de sıfır değerli olması halinde) gerçekleşir.

Cauchy-Schwarz eşitsizliği ayni yerli çarpım tarafından endüklenen topolojiye nazaran yerli çarpımın bir surekli fonksiyon olduğunu isbat etmek için kullanılır.

Cauchy-Schwarz eşitsizliği Bessel eşitsizliğini test etmek için kullanılır.

Heisenberg belirsizlik ilkesi genel formülasyonu fiziksel dalga fonksiyonlarinin icsel çarpımı uzayında Cauchy-Scwarz fonksiyonları iç ürün alana Schwarz eşitsizliği kullanılarak yapılmaktadır.

Prof. Dr. Sinsi 10-29-2012 09:51 AM

Doğrusal Cebir Nedir ?
 
Determinant

Determinant kare bir matris ile ilişkili özel bir sayıdır.

Bir A matrisin determinant'ı det(A) ya da det A şeklinde gösterilir. Diğer bir gösterim şekli ise matrix elementlerini arasına alan dikey çizgi ikilisidir. Örneğin:

matrisinin determinantı şu şekilde gösterilir:

Basit bir örnek olaraktan,

matrisinin determinantı şudur

Determinantın açık tanımı

Determinantın açık tanımı bir A matrisinin kofaktör C ya da minör M cinsinden gösterilebilir:

Determinant ve geometri

Yukarıda belirtilen 2x2 A matrisinin determinantın mutlak değeri, köşeleri (0,0), (a,b), (a + c, b + d), ve (c,d) noktalarında olan bir paralelkenarın alanına eşittir.

Benzer bir şekilde, 3x3 bir matrisin determinantının mutlak değeri, üç boyutlu paralelyüz cisminin hacmine eşittir.


Prof. Dr. Sinsi 10-29-2012 09:51 AM

Doğrusal Cebir Nedir ?
 


Determinantın temel özellikleri

Birim matrisin determinantı birdir:

Iki matrisin çarpımının determinantı, bu iki matrisin determinantlarının çarpımına eşittir:

det(A) sıfırdan farklı ise, A matrisinin tersi A-1 tanımlıdır. Bu durumda:

A ve B benzer matrisler olsun: ve dönüşüm matrisi X in tersi tanımlı olsun. Bu durumda:

Bir matrisin transpozunun determinantı kendi determinantına eşittir:

Bir matrisin bir sayı ile çarpımının determinantı:


Prof. Dr. Sinsi 10-29-2012 09:51 AM

Doğrusal Cebir Nedir ?
 

Kalıp Matrisler (Blok matrisler)

Boyutları n×n, n×m, m×n, ve m×m olan A, B, C, ve D matrislerinin olduğunu varsayalım. Bu matrisleri kullanarak n+m × n+m boyutunda büyük bir kare matris M oluşturalım. M i oluşturan A, B, C, ya da D kalıplarından herhangi birisi sıfır matris ise, M in determinantı kolayca hesaplanabilir:

Bu sonuç M matrisini iki matrisin çarpımı şekilde yazarak kolayca gösterilebilir. Anın tersi tanımlı olsun. Bu durumda

denkliği yazılabilir, ve burdan determinant

şeklinde hesaplanır. B ya da Cnin sıfır matris olması durumda yukarıdaki sonucu elde etimiş oluruz.

Ayrıca,

C ve D'nin değişme özelliği var ise, yani CD = DC ise,

A ve C'nin değişme özelliği var ise, yani AC = CA ise,

B ve D'nin değişme özelliği var ise, yani BD = DB ise,

A ve B'nin değişme özelliği var ise, yani AB = BA ise,

Prof. Dr. Sinsi 10-29-2012 09:51 AM

Doğrusal Cebir Nedir ?
 
Doğrusal denklem dizgesi

Doğrusal denklem dizgesi, birkaç tane aynı tip değişkenleri içeren birkaç tane doğrusal denklemlerin oluşturduğu topluluktur. Örneğin:

Burada üç çeşit değişken x_1, x_2 ile x_3 bulunur ve bu üç değişken üç ayrı doğrusal denklem içindedir ve böylece doğrusal denklemler (sistemi) dizge elde edilir.

Bir doğrusal dizgenin çözümü bilinmeyen değişkenlere, tüm doğrusal denklemleri aynı zamanda tatmin eden, reel sayıların tahsis edilmesidir. Yukarıdaki denklemler dizgesi için çözüm kümesi bulunur ve bu

olur.

Doğrusal denklem dizgeleri mühendislik, fizik, kimya, bilgisayar bilimi ve ekonomide pek çok uygulama alanı bulur.

http://frmsinsi.net/images/frmsinsim...sinsi.net_.jpg

Üç bilinmeyenli ve üç doğrusal denklemli bir doğrusal denklem dizgesi geometrik olarak üç boyutta üç düzeyin kesişmesi şeklinde görülür. Eğer bir çözüm bulunuyorsa, bu çözüm üç düzeyin kesişme noktasındadır.

Prof. Dr. Sinsi 10-29-2012 09:51 AM

Doğrusal Cebir Nedir ?
 
Dönüşümçarpanı

Fizikte dönüşümçarpanı (parity) eksenlerden birinin işaretinin değiştirilmesi durumunda elde edilen sonuçla ilk girdinin arasındaki bağıntıyı gösteren çarpandır. 3-boyutta, eksenlerin üçünün işaretinin birden değiştirilmesi ile dönüşümçarpanı elde edilir:

Hilbert uzayı
Hilbert uzayı, Öklit uzayını nicem mekaniğiyle uyumlu biçime dönüştüren soyut vektör uzayıdır. Pozitif skaler çarpıma sahiptir. Matematik, fizik ve mühendislikte sıkça kullanılmaktadır. Adını David Hilbert'ten almaktadır.

Jakobi özdeşliği
Matematikte Jakobi özdeşliği, ikili işlemde sıradeğiştirme durumunda işlemin sağlaması gereken bir özelliktir. Birleşme özelliğinden farklı olarak, Jakobi özdeşliği sıra değiştirmenin birleşme özelliğinin olmadığı durumlarda kullanılması gereklidir. Alman matematikçi Carl Gustav Jakob Jacobi'nin adından esinlenilerek bu isim verilmiştir.
Tanım
Jakobi özdeşliği çapraz çarpım benzeri ikili bir X işlemi için, S kümesinde aşağıdaki gibidir;

Matris (matematik)

http://frmsinsi.net/images/frmsinsim...sinsi.net_.jpg

Bir matrisin dizilişi. "m" satırları, "n" sütunları temsil eder

Matematikte matris veya dizey, dikdörtgen bir sayılar tablosu veya daha genel bir açıklamayla, toplanabilir veya çarpılabilir soyut miktarlar tablosudur. Dizeyler daha çok doğrusal denklemleri tanımlamak, doğrusal dönüşümlerde (lineer transformasyon) çarpanların takibi ve iki parametreye bağlı verilerin kaydedilmesi amacıyla kullanılırlar. Dizeylerin toplanabilir, çıkartılabilir, çarpılabilir, bölünebilir ve ayrıştırılabilir olmaları, doğrusal cebir ve dizey kuramının temel kavramı olmalarını sağlamıştır.

BİLGİLER: Matris (dizey) sayma sayılarını dikdörtgen halinde dizip gösteren bir matematik tablodur. Örneğin:

Bir diğer notasyona göre dikdörtgen parantezler yerine eğri şekilli parantez kullanılır:

Bir matrisdeki düz yatay sıraya satır dikey sıraya sütun adı verilir. Bir matris içinde dizilip gösterilen sayal sayılar öğe veya eleman olarak adlandırılır. Matrisin büyüklüğü satır sayısı ile sutun sayısı birlikte verilmesi ile ifade edilir. Örnek olan verilen matrisler 4x3 (yani 4 satırlı 3 sütunlu) matrislerdir. Matrisin boyutu satır sayısı ve sütun sayısının ayrı ayrı verilmesi ile ifade edilir. Örnek matrislerin boyutu 4 ve 3 olur.

Genel matematiksel notasyon olarak bir matris bir büyük harf ile ifade edilir. Bazan matrislerin daha açık olarak ifadesi notasyonda kullanılan büyük harf vurgulanması ile yapılır. Bu vurgu bilgisayar ile yazılırsa tipografik kalın harf vurgusu ile; elle yazısı ile matris harfinin altına bir (bazan iki) çizgi veya küçük dalgalı bir cizgi koymak suretiyle yapılır. Daha acik bir sekilde notasyon matrisin parantez icinde küçük harfle ifade edilen genel elemanı için i satır ve j sütun alt indisli ve parantez disinda matris buyuklugu verilerek ifade edilir. Örneğin m satırlı n sütunlu mxn türünden bir A matrisi

A veya
veya

olarak notasyonla ifade edilir.

Böylece genel olarak m ve n pozitif tamsayılar, veolmak üzere sayma sayılarından oluşan yukarıdaki sayılar tablosu matris (dizey) olur. m, matrisin satır sayısını; n ise matrisin sütun sayısını belirtir. m satır ve n sütundan oluşan matrise mxn türünden matris denir:


Prof. Dr. Sinsi 10-29-2012 09:52 AM

Doğrusal Cebir Nedir ?
 
Nokta çarpım

Matematikte, nokta çarpım veya skaler çarpım, değer olarak iki vektör alan ve sonuç olarak skaler bir değer döndüren işleme denir.

a = [a1, a2, … , an]
b = [b1, b2, … , bn] şeklinde gösterilen a ve b vektörlerinin nokta çarpımı şu şekilde bulunur:

Örneğin, a=[3,-2,5] ve b=[-1,-4,2] için
a.b= (3 x -1) + (-2 x -4) + (5 x 2) = -3 + 8 + 10 = 15 sonucunu verir.

Sayıl alan
Matematikte ve fizikte sayıl alan (skaler) düşünülen uzayın herbir noktasına sayıl bir değer verir. Buradaki sayıl değer matematiksel bir sayı veya fiziksel bir nicelik olabilir. Fizikte bu tür alanlara örnek olarak; uzayda sıcaklık dağılımı, akışkanda basınç dağılımı ve Higgs alanında olduğu gibi spin sayısı sıfır kuantum alanı gösterilebilir. Bu tür alanlar sayıl alan kuramının çalıma konusudur.
Fizikte kullanımı
Fizikte, sayıl alanlar çoğunlukla bir alanla belirlenen kuvvetlerin potansiyel enerjisini tanımlamakta kullanılırlar. Kuvvet yöneyli (vektörel) bir niceliktir ve sayıl alanın yöntürevini aldığımızda bu kuvveti elde edebiliriz. Örnekler:

Potansiyel alanlar (Klasik fizikte kütleçekimsel potansiyel veya elektrik potansiyel) yönsüz alanlardır ve bilindik kuvvetleri tanımlarlar.
Meteorolojide kullanılan sıcaklık, nem veya basınç alanları sayıl alanların örneklerindendir

Sıfır noktası

Kartezyen eksenler sisteminde sıfır noktası

Matematikte sıfır noktası (orijin) düz uzayda O harfi ile gösterilen özel bir noktadır. Kartezyen eksenler sisteminde eksenlerin kesiştiği nokta sıfır noktasıdır. Düz uzayda sıfır noktası herhangi bir uygun nokta olarak seçilebilir. Bu seçim işlem sonucunda herhangi bir değişikliğe yol açmayacaktır. Sıfır noktası seçilirken genellikle yapılacak işleme göre uygun olan yer seçilir.

En çok kullanılan eksen sistemler, iki boyutlu ve üç boyutlu, iki veya üç birbirine dik eksenden oluşur. Bu iki veya üç eksenin kesiştiği noktalara sıfır noktası denir ve iki boyutta (0,0), üç boyutta da (0,0,0) ile gösterilir.

Sıfır noktasına göre simetri
Bu çizge sıfır noktasına göre simetriktir. x=y çizgisine göre yansıması düşünüldüğünde aynı görüntü elde edilir ve simetrik olduğu anlamına gelir.

http://frmsinsi.net/images/frmsinsim...sinsi.net_.jpg

Bir çizgenin y = x çizgisine göre yansıması alındığında eğer aynı çizge elde ediliyorsa bu o çizgenin sıfır noktasına göre simetrik olduğu anlamına gelir. Bu durum önce x-eksenine göre sonra da y-eksenine göre çizgenin 180 derece dönderilmesi ile de elde edilir.

Simetrik matris

Doğrusal cebirde, transpozu kendisine eşit olan matrislere simetrik matris denir. A bir simetrik matris olsun. Bu durumda:

Simetrik matrislerin elementleri matris köşegenine göre simetriktir. A nın elementleri aij şeklinde gösterilsin. Böylece

eşitliği her i ve j indeksi için geçerlidir. Örneğin aşağıdaki 3x3 matris simetriktir:

Yukardaki açıklamalardan anlaşılacağı üzere, köşegen bir matris simetriktir.

Doğrusal cebirde, gerçel bir simetrik matris gerçek bir iç-çarpım uzayında kendi-döngel (self-adjoint) bir operatörü temsil eder. Karmaşık sayılar uzayında buna karşılık gelen operatör, elementleri karmaşık olan Hermitsel (Hermityan) matrisdir. Bundan dolayı, simetrik matris denildiğinde, matris elementlerinin gerçel olduğu varsayılır.

Prof. Dr. Sinsi 10-29-2012 09:52 AM

Doğrusal Cebir Nedir ?
 
Nokta çarpım

Matematikte, nokta çarpım veya skaler çarpım, değer olarak iki vektör alan ve sonuç olarak skaler bir değer döndüren işleme denir.

a = [a1, a2, … , an]

b = [b1, b2, … , bn] şeklinde gösterilen a ve b vektörlerinin nokta çarpımı şu şekilde bulunur:

Örneğin, a=[3,-2,5] ve b=[-1,-4,2] için

a.b= (3 x -1) + (-2 x -4) + (5 x 2) = -3 + 8 + 10 = 15 sonucunu verir.

Sayıl alan

Matematikte ve fizikte sayıl alan (skaler) düşünülen uzayın herbir noktasına sayıl bir değer verir. Buradaki sayıl değer matematiksel bir sayı veya fiziksel bir nicelik olabilir. Fizikte bu tür alanlara örnek olarak; uzayda sıcaklık dağılımı, akışkanda basınç dağılımı ve Higgs alanında olduğu gibi spin sayısı sıfır kuantum alanı gösterilebilir. Bu tür alanlar sayıl alan kuramının çalıma konusudur.
Fizikte kullanımı

Fizikte, sayıl alanlar çoğunlukla bir alanla belirlenen kuvvetlerin potansiyel enerjisini tanımlamakta kullanılırlar. Kuvvet yöneyli (vektörel) bir niceliktir ve sayıl alanın yöntürevini aldığımızda bu kuvveti elde edebiliriz. Örnekler:

Potansiyel alanlar (Klasik fizikte kütleçekimsel potansiyel veya elektrik potansiyel) yönsüz alanlardır ve bilindik kuvvetleri tanımlarlar.

Meteorolojide kullanılan sıcaklık, nem veya basınç alanları sayıl alanların örneklerindendir

Sıfır noktası

Kartezyen eksenler sisteminde sıfır noktası

Matematikte sıfır noktası (orijin) düz uzayda O harfi ile gösterilen özel bir noktadır. Kartezyen eksenler sisteminde eksenlerin kesiştiği nokta sıfır noktasıdır. Düz uzayda sıfır noktası herhangi bir uygun nokta olarak seçilebilir. Bu seçim işlem sonucunda herhangi bir değişikliğe yol açmayacaktır. Sıfır noktası seçilirken genellikle yapılacak işleme göre uygun olan yer seçilir.

En çok kullanılan eksen sistemler, iki boyutlu ve üç boyutlu, iki veya üç birbirine dik eksenden oluşur. Bu iki veya üç eksenin kesiştiği noktalara sıfır noktası denir ve iki boyutta (0,0), üç boyutta da (0,0,0) ile gösterilir.

Sıfır noktasına göre simetri

Bu çizge sıfır noktasına göre simetriktir. x=y çizgisine göre yansıması düşünüldüğünde aynı görüntü elde edilir ve simetrik olduğu anlamına gelir.

http://frmsinsi.net/images/frmsinsim...sinsi.net_.jpg

Bir çizgenin y = x çizgisine göre yansıması alındığında eğer aynı çizge elde ediliyorsa bu o çizgenin sıfır noktasına göre simetrik olduğu anlamına gelir. Bu durum önce x-eksenine göre sonra da y-eksenine göre çizgenin 180 derece dönderilmesi ile de elde edilir.

Simetrik matris

Doğrusal cebirde, transpozu kendisine eşit olan matrislere simetrik matris denir. A bir simetrik matris olsun. Bu durumda:

Simetrik matrislerin elementleri matris köşegenine göre simetriktir. A nın elementleri aij şeklinde gösterilsin. Böylece

eşitliği her i ve j indeksi için geçerlidir. Örneğin aşağıdaki 3x3 matris simetriktir:

Yukardaki açıklamalardan anlaşılacağı üzere, köşegen bir matris simetriktir.

Doğrusal cebirde, gerçel bir simetrik matris gerçek bir iç-çarpım uzayında kendi-döngel (self-adjoint) bir operatörü temsil eder. Karmaşık sayılar uzayında buna karşılık gelen operatör, elementleri karmaşık olan Hermitsel (Hermityan) matrisdir. Bundan dolayı, simetrik matris denildiğinde, matris elementlerinin gerçel olduğu varsayılır.

Prof. Dr. Sinsi 10-29-2012 09:52 AM

Doğrusal Cebir Nedir ?
 
Tersçapraz

Doğrusal cebirde, bir A dizeyinin tersçaprazı (transpose) AT şeklinde ifade edilir (diğer gösterimler A′, Atr or At). Bir dizeyin tersçaprazı aşağıdaki şekillerde elde edilebilir:

A dizeyinin ilkköşegene göre yansıması alınarak AT elde edilir,
A dizeyinin satırları AT dizeyinin sütünları olarak yazınca elde edilir,
veya A dizeyinin sütünları AT dizeyinin satırları olarak yazılınca elde edilir.

AT dizeyinin (i,j) ögesi A dizeyinin (j,i) ile gösterilen ögesine eşittir:

Eğer A dizeyi m × n bir dizey ise AT dizeyi n × m bir dizeydir. Bir sayılın (skaler) tersçaprazı yine o sayıldır.
Örnekler

Özellikler

A, B dizeyleri ve c sayılı için aşağıdaki özellikler geçerlidir:

Bir dizeyin tersçaprazının tersçaprazı kendisidir.

Toplama işlemine göre yukardaki gibi dağıtılabilir.

Dizey çarpımının tersçaprazı yukardaki gibidir; dizeylerin çarpımının sırası değişir ve iki dizeyinde tersçaprazı alınır. Dizey çarpımında sıra değişikliğine dikkat edilmesi gereklidir.

Sayıl ile dizey çarpımının tersçaprazı alınırken sayıl olduğu gibi bırakılır ve dizeyin tersçaprazı alınır. Sayılın tersçaprazı kendisine eşittir ve dizey ile sayıl çarpılırken çarpımın sırası önemli değildir.

Kare bir dizey için dizeyin dizey değerliği (determinantı) ile o dizeyin tersçaprazının dizey değerliği aynıdır.

İki yöneyin, a ve b, nokta çarpımı aşağıdaki gibi hesaplanabilir:

bu çarpımda ai bi şeklinde Einstein gösterimi kullanılarak yazılabilir. Burada i alt imi ve i üst iminin aynı olması i üzerinden toplama yapılacağı manasına gelmektedir.

Tersi alınabilir bir dizeyin tersçaprazının da tersi alınabilir. Yukarıdaki A dizeyinin tersçaprazının tersi ile tersinin tersçaprazı birbirine eşittir. Herhangi bir dizeyin tersinin tersçaprazının tersi kendisine eşittir. A−T şeklinde yazım yukardaki eşitlikteki sağ veya sol taraftaki terimlerden herhangi birini ifade etmek için kullanılır.

Eğer A kare bir dizey ise bu dizeyin özdeğerleri ile tersçaprazlarının özdeğerleri birbirine eşittir.

Prof. Dr. Sinsi 10-29-2012 09:52 AM

Doğrusal Cebir Nedir ?
 
Transpoz

Doğrusal cebirde A matrisinin transpozu AT (veya Atr, tA veya A′) olarak yazılır ve aşağıdaki işlemler olarak tanımlanır:

A'nın satırlarını AT'nin süunları olarak yaz.

A'nın sütunlarını AT'nin satırları olarak yaz.

A'yı ana köşegende yansıt.

m × n bir matrisin transpozu n × m matris olur.

Satırları sütun, sütunları satır yapar. Transpoz matrisin tersi değildir.

Vektör

Vektör veya yöney, sayısal büyüklüğü ve birimi yanında, skaler niceliklerden farklı olarak yönü de olan niceliktir. Hız, kuvvet, ivme ve ağırlık örnek birer vektörel niceliktir. Vektörler bir sayı (skaler) ile veya başka bir vektör ile çarpılabilir ve bölünebilir. Aynı zamanda yönü değiştirilmemek şartı ile ötelenebilirler.

Yönlü doğru parçası [Fiziksel (Geometrik) vektörler]

Vector arrow pointing from A to B

Yönlü doğru parçası veya Fiziksel vektörler veya Geometrik vektörler, başlangış noktası "A", Bitim noktası "B" olan [AB] doğru parçasına Yönlü doğru parçası denir. Bu Vektör; ile gösterilir.

Ok vektörün yönünü gösterir. Doğru parçasının uzunluğu ise, vektör büyüklüğü ile doğru orantılıdır.

http://frmsinsi.net/images/frmsinsim...sinsi.net_.jpg

İki boyutlu bir koordinat düzleminde; bazen bir vektör koordinat düzlemine dik olarak gösterilmesi gerekebilir. Bir dairenin merkezinde bir nokta bulunursa (Unicode U+2299 ⊙), bu sembol yönü gözlemciye doğru olan bir vektörü göstermektedir. Bir dairenin içinde bir çarpı işareti bulunursa (Unicode U+2297 ⊗), bu sembol yönü düzlemin arkasına doğru olan bir vektörü göstermektedir. Bu semboller, bir savaş okunun ucunun görüntülenmesi ve bir savaş okunun arka kanatlarının görüntülenmesi gibi düşünülebilir.

İlkköşegen toplamı

Doğrusal cebirde, nxnlik bir A kare dizeyinin ilkköşegen toplamı (trace) ilkköşegen üzerindeki ögelerin toplamıdır. Bu toplam aşağıdaki şekilde gösterilebilir:

burada aii gösterimi, A dizeyinin i sıra numaralı ve i sütun numaralı ögesine karşılık gelmektedir. Burada i altimi (indis) gösterimi, dizeylerin ögelerini göstermek için matemetikte sıklıkla kullanılan bir gösterimdir.

İlkköşegen toplamı, fizikte ve matematikte kullanım alanına sahiptir.


Prof. Dr. Sinsi 10-29-2012 09:52 AM

Doğrusal Cebir Nedir ?
 
Transpoz

Doğrusal cebirde A matrisinin transpozu AT (veya Atr, tA veya A′) olarak yazılır ve aşağıdaki işlemler olarak tanımlanır:

A'nın satırlarını AT'nin süunları olarak yaz.
A'nın sütunlarını AT'nin satırları olarak yaz.
A'yı ana köşegende yansıt.

m × n bir matrisin transpozu n × m matris olur.

Satırları sütun, sütunları satır yapar. Transpoz matrisin tersi değildir.

Vektör

Vektör veya yöney, sayısal büyüklüğü ve birimi yanında, skaler niceliklerden farklı olarak yönü de olan niceliktir. Hız, kuvvet, ivme ve ağırlık örnek birer vektörel niceliktir. Vektörler bir sayı (skaler) ile veya başka bir vektör ile çarpılabilir ve bölünebilir. Aynı zamanda yönü değiştirilmemek şartı ile ötelenebilirler.

Yönlü doğru parçası [Fiziksel (Geometrik) vektörler]

Vector arrow pointing from A to B

Yönlü doğru parçası veya Fiziksel vektörler veya Geometrik vektörler, başlangış noktası "A", Bitim noktası "B" olan [AB] doğru parçasına Yönlü doğru parçası denir. Bu Vektör; ile gösterilir.

Ok vektörün yönünü gösterir. Doğru parçasının uzunluğu ise, vektör büyüklüğü ile doğru orantılıdır.

http://frmsinsi.net/images/frmsinsim...sinsi.net_.jpg

İki boyutlu bir koordinat düzleminde; bazen bir vektör koordinat düzlemine dik olarak gösterilmesi gerekebilir. Bir dairenin merkezinde bir nokta bulunursa (Unicode U+2299 ⊙), bu sembol yönü gözlemciye doğru olan bir vektörü göstermektedir. Bir dairenin içinde bir çarpı işareti bulunursa (Unicode U+2297 ⊗), bu sembol yönü düzlemin arkasına doğru olan bir vektörü göstermektedir. Bu semboller, bir savaş okunun ucunun görüntülenmesi ve bir savaş okunun arka kanatlarının görüntülenmesi gibi düşünülebilir.

İlkköşegen toplamı
Doğrusal cebirde, nxnlik bir A kare dizeyinin ilkköşegen toplamı (trace) ilkköşegen üzerindeki ögelerin toplamıdır. Bu toplam aşağıdaki şekilde gösterilebilir:

burada aii gösterimi, A dizeyinin i sıra numaralı ve i sütun numaralı ögesine karşılık gelmektedir. Burada i altimi (indis) gösterimi, dizeylerin ögelerini göstermek için matemetikte sıklıkla kullanılan bir gösterimdir.

İlkköşegen toplamı, fizikte ve matematikte kullanım alanına sahiptir.



Powered by vBulletin®
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.