Geri Git   ForumSinsi - 2006 Yılından Beri > Eğitim - Öğretim - Dersler - Genel Bilgiler > Eğitim & Öğretim > Fizik / Kimya

Yeni Konu Gönder Yanıtla
 
Konu Araçları
mekanik, polimer, polimerlerin, özellikleri

Polimer Nedir? Polimerlerin Mekanik Özellikleri

Eski 11-04-2010   #1
Şengül Şirin
Varsayılan

Polimer Nedir? Polimerlerin Mekanik Özellikleri







Polimerler; çoksayıda molekülün kimyasal bağlarla düzenli bir sekilde bağlanarak oluşturdukları yüksek molekül ağırlıklı bileşiklerdir “Poli” Latince bir sözcük olup çok sayıda anlamına gelir Polimerler “monomer” denilen birimlerin bir araya gelmesiyle oluşmaktadır Buna basit bir örnek olarak “Polistren” verilebilir Polistren birçok stren monomerinin monomerinin bir araya gelmesi ile oluşmuştur
Yukarıda görüldüğü gibi stren monomerinin polimerizasyonu ile bu monomeri çok sayıda içeren polistren elde edilmektedir



Organik kimyacılar ondokuzuncu yüzyılın ortalarında bazı denemelerinde rastlantısal olarak yüksek molekül ağırlıklı maddeler sentezlediler Bu yüzyılın ikinci yarısından itibaren polimer konusundaki araştırmalar gelişmiş ve yeni polimer türleri geliştirilmiştir Bu alanın öncüsü Alman kimyager Herman Stauding


Herman Stauding ilk defa polimerizasyon koşullarının polimer oluşumu üzerine etkisini tanımlamıştır
Stauding kimyanın bu alanında yaptığı çalışmalarla 1953 yılında Nobel ödülünü almıştır Bu alanda ilk kez çalışan araştırmacılar doğal polimerleri taklit ederek işe başlamışlar ve 1930 yılında Wallace Carothers Nylonu sentezlemeyi başarmıştır Endüstriyel organik kimyacılar ise daha çok polimer kimyası alanına kayarak çalışmalarını bu yönde sürdürmeye başlamıştır Bunun sonucu olarak günümüzde sayısız polimer türü geniş bir uygulama alanın da çeşitli amaçlar için kullanılmaktadır Aşağıda yaygın olarak kullanılan bazı polimerlerin formülleri ve sentezlendikleri monomerler gösterilmiştir İkinci dünya savasından bu yana birçok polimer laboratuarlar da üretilmiş ve ayrıca birçok polimer endüstriyel ölçekte üretilmeye başlamıştır


Polimerler yapılarına göre sınıflandırılabilirler Bir polimer tekbir monomer biriminin tekrarlanmasından oluşuyorsa buna “homopolimer” denir Örnek olarak, etilenden elde edilen polietilen ve strenden elde edilen polistren verilebilir
Eğer polimer molekülü iki farlı monomerin birleşmesinden oluşuyorsa buna “kopolimer” denir Kopolimerlerin çeşitlerini üçe ayırabiliriz


1 Ardaşık kopolimer
2Blok kopolimer
3 Düzensiz kopolimer


Polimer zincirler ister homopolimer ister kopolimer olsun, üç farklı formda buluna bilirler


1 Doğrusal
2 Dallanmış
3 Çapraz Bağlı
02 Polimerlerin Molekül Ağırlıkları


Polimerlerin fiziksel özellikleri molekül ağırlığı ile ilişkilidir Bu nedenle polimerlerden beklenen fiziksel özellikleri gösterebilmeleri için belirli bir molekül ağırlığına sahip olmaları gerekir


Genellikle molekül ağırlığının artması ile yapıda moleküller arası çekim artmakda ve buda polimerin mekanik ve ısı özelliklerini etkilemektedir Polimerlerin molekül ağırlıkları, jel geçirgenlik kromatografisi, viskozimetrik ölçüm, ozmotik ve basınç ışık saçılması gibi yöntemlerle belirlenebilir


03 Polimerlerin Sentezi
0301 Serbest Radikal Polimerleşmesi


Zincir polimerleşmesinin radikaller üzerinden yürüyen türüdür Serbest radikal polimerleşmesi üç aşamadan oluşur
Başlangıçta monomer molekülleri çeşitli yöntemler kullanılarak radikal haline dönüştürülür Radikal oluşumu, ısı, fotokimyasal, radyasyon veya çeşitli başlatıcılar tarafından sağlanır Bu amaçla ortamda radikal oluşturmak için en yaygın yöntem ortama dışarıdan bir başlatıcı eklemektir Başlatıcı, radikal oluşturarak vinil grubundaki çift bağa atak yaparak polimerizasyon işlemini başlatmış olur Başlatıcı olarak çeşitli peroksitler, diazo bileşikleri ve redoks çiftleri kullanılır


Peroksit başlatıcılardan en yaygın kullanılanı benzil peroksittir Bu başlatıcı ısı ile kolaylıkla parçalanarak serbest radikal oluşturmaktadır Aşağıdaki şekilde benzil peroksit ısı etkisi ile parçalanarak iki tane serbest radikale dönüşmektedir
Daha sonra başlama aşamasında oluşan radikaller monomer molekülündeki çift bağa atak yaparak polimerizasyonu başlatırlar Şekilde başlatıcıdan oluşan radikaller etilen molekülündeki çift bağdan birini kırıp yeni bir radikal oluştururken böylece polimerizasyon reaksiyonunu da başlatmış olmaktadır


Oluşan yeni radikaller ortamda bulunan monomerler ile reaksiyona girerek polimer zincirinin büyümesine neden olurlar
Polimerizasyon ilerledikçe polimer zinciri büyür ve molekül ağırlığı artar Polimerizasyonun bu aşamasında artık ortamda monomer sayısı azalmıştır Bu nedenle ortamdaki radikaller sönümlenmeye başlar
Ortamdaki radikaller çeşitli yollar ile (dallanma yeni çift bağ oluşturma veya bir başka radikal ile reaksiyona girerek) sönümlenir ve polimerizasyon işlemi tamamlanır


0302 İyonik Polimerizasyon


Zincir polimerizasyonu serbest radikaller üzerinden olduğu kadar iyonlar ve koordinasyon kompleks yapıcı ajanlar üzerinden de yürüyebilir Bir vinil monomerinin hangi mekanizma üzerinden polimerleştirileceği, sübstüye gruba bağlıdır Örneğin halojenlenmiş viniller (vinilklorür, vb gibi) ve vinil esterler yalnızca radikallerle polimerleştirilirler Eğer, vinil monomerine elektron verici gruplar takılmışsa yalnızca katyonik polimerizasyon söz konusudur
İyonik polimerizasyon genellikle katalizörlerin ayrı bir fazda bulunduğu heterojen sistemleri içerir Reaksiyon hızı radikal polimerizasyonuna göre çok hızlıdır Bazı durumlarda reaksiyon hızını kontrol etmek için polimerizasyon işlemi çok düşük sıcaklıklarda gerçekleştirilir


0303 Kondenzasyon Polimerizasyonu


Kondenzasyon polimerleri benzer veya farklı yapıdaki poli-fonksiyonel monomerlerin, genellikle küçük bir molekül çıkararak reaksiyona girmesiyle elde edilir Burada en önemli koşul monomerlerin poli-fonksiyonel oluşudur OH, COOH, NH2, gibi fonksiyonel gruplardan en az iki tane taşıyan monomerler esterleşme, amidleşme, vb gibi reaksiyonlarla, küçük moleküller çıkararak, kondenzasyon polimerlerini oluşturular Poliüretanların elde edildiği üretan oluşumu ve naylon 6′ nın elde edildiği kaprolaktam halka açılması gibi, küçük molekül çıkısı olmadan doğrudan monomerlerin katılması seklinde yürüyen polimerizasyon reaksiyonları da genellikle bu grup içinde değerlendirilir


04 Polimerizasyon İşlemleri
0401 Yığın Polimerizasyonu


Bu tür polimerizasyonda monomer, içine uygun bir baslatıçı ilave edildikten sonra, belli sıcaklık ve basınçta doğrudan polimerleştirilir Bu prosesin en önemli özelliği oldukça saf polimerlerin üretilebilmesidir Proseste, polimerizasyon sonucu oluşan ürün, üretim sonrası ayırma, saflaştırma, vb gibi prosesleri gerektirmez, doğrudan satışa sunulabilir Ayrıca, diğer proseslere göre daha ucuz makina ve teçhizat gerektirdiğinden, basit ve ekonomik bir proses olarak değerlendirilir


Bu prosesin en önemli dezavantajı ortaya çıkan ısının ortamdan kolay kolay uzaklaştırılamayışı, dolayısıyla sıcaklık kontrolünün güç olmasıdır Bu hususa özellikle radikal polimerizasyonunda dikkat edilmelidir Bu tür polimerizasyonlar şiddetli ekzotermiktir ve yüksek molekül ağırlıklı polimer moleküllerinin hemen oluşması ortam viskozitesinin hızla artmasına neden olur Sıcaklık kontrolü son derece zorlaşır Yerel sıcaklık artışları, polimerin bozunmasma ve monomerin kaynaması sonucu gaz oluşumuna, hatta şiddetli patlamalara neden olabilir


0402 Süspansiyon Polimerizasyonu


Bu polimerizasyon tekniği endüstiride büyük miktarlarda polimer üretiminde yaygın olarak kullanılmaktadır Bu polimerizasyonu sonucu polimerizasyon şartlarına bağlı olarak 50 – 1000 mikrometre çapında, gözenekli veya gözeneksiz partiküller elde edilir Süspansiyon polimerizasyonunda iki faz vardır


Monomer fazı
Dağıtma fazı



Bir polimer süspansiyon polimerizasyonu için kullanılacaksa dikkat edilmesi gereken ilk özellik monomerin dağıtma fazındaki çözünürlüğüdür Monomerin, dağıtma fazındaki çözünürlüğünün çok düşük olması gerekir Bu amaçla hidrofilik monomerler için yağ ve petrol eteri gibi hidrofobik sıvılar kullanılır Hidrofobik monomerler için de su, dağıtma fazı olarak kullanılır Monomer damlacıkları yapısında çözünmüş olarak başlatıcıyıda içerirler Isı vb etkiler ile polimerizasyon reaksiyonunun başlatılır Reaksiyon sonucunda her monomer damlası bir polimer partiküle dönüşür


Süspansiyon polimerizasyonunda karşılaşıbilecek en büyük sorun partiküllerin birbirlerine yapışarak birikmesidir Bunu eklemek için dağıtma fazına partikülleri stabil olarak ortamda tutabilecek stabilizör maddeler eklenir Partikül çapı kullanılan stabilizatöre ve ortamın karıştırılma hızına bağlı olarak değişir


0403 Emülsiyon Polimerizasyonu


Emülsiyon polimerizasyonunda birbiri ile karışmayan iki faz söz konusudur Monomer fazı dağıtma fazı içinde emüsyon halinde dağıtılmıştır Süspansiyon polimerizasyonundan farklı olarak burada başlatıcı dağıtma fazında çözünmüştür Çeşitli emülsiyon yapıcı maddeler kullanılarak monomer fazı dağıtma fazı içinde emülsiyon halde stabil olarak tutulur Bunlardan en yaygın kullanılan sodyumdodesilsülfattır Bu polimerizasyon tekniği ile 1 mikrometre civarında tek düze küresel partiküller elde edilir


0404 Dispersiyon Polimerizasyonu


Bu polimerizasyon tekniği ile 1 – 10 mikrometre arasında tekdüze küresel polimer partiküller elde edilir Dispersiyon polimerizasyonunun özelliği monomer fazı, dağıtma fazında çözünmektedir ama polimerizasyon işleme sonunda oluşan polimer dağıtma fazında çözünmemektedir


Polimerlerin Mekanik Özellikleri


Mekanik Dayanımı: Bir kuvvet yüklenmesi karşısında malzemenin kendi şeklini değiştirmemek için gösterdiği dirençtir


Reoloji: Fizikte deforme olabilen malzemeleri inceleyen bilim dalıdır Bir polimerik malzemenin dıştan gelen bir etkiye karşı göstereceği tersinir veya tersinmez deformasyonlardan ibaret mekanik davranışları inceleyen bilim dalıdır
Deformasyon: Malzemenin bilinen bir gerilim altında akması, akışkan davranış göstermesi ve boyut değiştirmesidir


Viskozite(=Akmazlık): Polimerik malzemenin akmaya karşı gösterdiği dirençtir
- Elastik deformasyon = Tersinir deformasyon
- Viskoz deformasyon = Tersinmez deformasyon


Sürünme(=Creep): Uzun süre gerilim altında kalmaktan dolayı malzemenin içinde tersinmez deformasyonların birikmesi sonucu malzemedeki yapı taşlarının birbiri üzerinde akmasıdır


Viskoelastik malzeme hem viskozluk hem de elastiklik özellikli olabilir
Kauçuksal Elastiklik (=Elastromer) : Küçük gerilimler altında yüksek orandaki tersinir gerilim kauçuksal elastikliğin temel özelliğidir O halde;


- Hızlı uzama gösterirler (%500)
- Enerji kaybetmeme özelliği (tersinir olduğu için)
- Maksimum uzamada yüksek gerilim direnci ve yüksek modül değerine sahip olmalı
- Polimerin molekül ağırlığı yüksek olmalı
- Polimer zincir hareketlerinin kolay olması için Tg(çalışabilme sıcaklığı) nin üstünde olmalıdır
- Polimer kararlı durumda yani üzerine hiçbir kuvvet uygulaması yok iken amorf olmalıdır
- Polimer zincirleri arasında tersinir deformasyonu sağlayacak şekilde ağ gibi çapraz bağ olmalıdır
- Zincirler hareket ederler
Elastik Modülüs:
? = Gerilme Kuvveti = f/(ab) alanı
t= Uzama = ΔL/Lo (orjinal uzunluk)
Elastik Modülüs: /t
Bu oran ne kadar yüksek olursa o kadar sağlam olur
Vigoisson’s oranı: Daralma ile gerilimin birbirine mutlak oranıdır
Vigoisson’s oranı = δd (Enine daralma)/ δb (Boyuna Uzama)
Bazı maddelerin Elastik modülüsleri
Malzeme Elastik Modülüs (mPa) Poisson’s Oranı
Elmas 80×104 02
Çelik 22×104 028
Bakır 17×104 034
YYPE (Yüksek Yoğunluklu Polietilen) 7×104 -
MMA 37×103 033
PS 34×103 033
Doğal Kauçuk 1 05
Nylon 66 2×103 04
AYPE 200 04


Gerlim- Gerinim Eğrileri:


Bu eğrilere göre sert kırılgan dayanıklı yumuşak zayıf olarak adlandırılıyor
1)
- Elastik deformasyon var
- Yüksek gerilimde kırılgan
2)
- Polimer malzeme plastik deformasyona uğramıştır Çünkü yüksek gerilimde eğim değişmiştir
- Polimer plastik deformasyonun hemen başlangıcında yine kırılgan olarak kopar
- Bu tür davranış Tg altındaki amorf polimerlerde görülür
3)
- Akma veriminin sonrasında polimer plastik deformasyonun devamında soğuk çekme başlangıcında kırılma olur
- Gerilim direncinde kopmadan önce görülen artış deformasyon sertleşmesi olabileceğini gösterir
- Bu özellik kristal yüzdesi yüksek düşük sıcaklıklarda gözlenir
4)
- Kırılma soğuk çekmeden sonra ani düşüşü izler
- Yarı kristal polimerlerde (kristal yüzdesi %20 nin üzerinde) ve düşük molekül ağırlıklı amorf polimerlerde gözlenir
5)
- Kırılmadan önce gerilim direncinde hızla artış gözlenir
- Yarı kristal polimerlerde gözlenir
Soğuk çekme moleküllerde çekilme yönünde kaymasına neden olur Ayrıca moleküller arasında ve içinde belli bir gerilim birleşmesi olur Ön gerilim olarak bilinen bu olay gerilim direncinin artmasına neden olur
6)
- Akma verimi hemen hemen yok gibidir
- Gerilme direnci daha düşüktür
- Kauçuk özellik gösteren polimerlerde gözlenir
7)
-Polimer malzeme daha az uzama gösteriyor
Kopmada gerilim direnci: Kopma anında ölçülebilen en yüksek gerilim direncidir
Kopmada uzama direnci: Kopma anında ölçülebilen en yüksek uzama direncidir
Gerilim- Gerinim Eğrileri sonucu ortaya çıkan özellikler
Mekanik Davranış Elastik Modül Akma Verimi Kopmada Gerilim Direnci Kopmada uzama yüzdesi Örnek polimerler
Yumuşak-zayıf Düşük Gözlenmeyebilir çok düşük Düşük 150 Kauçuk ve Türevleri
Yumuşak-dayanıklı Düşük Gözlenmeyebilir çok düşük Düşük 500 Kauçuk ve plastifiyanlı PVC türleri
Sert-kuvvetli Yüksek Yüksek Yüksek 5 PS
Sert-dayanıklı Yüksek Yüksek Yüksek 300 Yarı kristal polimer
Sert-kırılgan Yüksek Yok Yüksek Çok az Termoset polimerler
Örnek: Yarı kristal polimerlerin gerinim- gerilim eğrisi
O-A : Gerilim direnci uzama eğrisi düzgün doğrudur Bu davranış elastik deformasyondur Doğrunun eğimi elastik modülüstür
A-B : Gerilim direnci (σ) artışı, gerinimin artmasına karşın azalmıştır B noktasında bu değer maksimuma ulaşmıştır B noktası polimerin akma verimidir
B-C : Polimerde boyun oluşmasının olduğu bölgedir Plastik deformasyon ve akma boyun üzerinden çekme sürdükçe devam eder Boyun oluşmasının tamamlanması C noktasında biter
C-D : Gerilim direnci hemen hemen sabittir Zincirler akma gösterir Uzama devam ettiği sürece zincirler çekilme doğrultusunda yönlenirler Bu tür işleme soğuk çekme veya soğuk akma denir D noktasında daha düzenli bir hal alır
D-E : Soğuk çekmenin veya plastik akmanın bittiği ve deformasyon sertleşmesi sonucu polimerde gerilim direncinin hızla artığı bölgedir
E : Bu noktada kopma meydana gelir
Polimerlerin Statik Mekanik Özelliklerini Saptamada Kullanılan Deney Yöntemleri
1) Gerilim direnci uzama ve elastik modülüs
2) Ergime akış indeksi
3) Gerilim gevşemesi, sürünme, yorulma
4) Çarpma direnci
5) Aşınma
1) Gerilme uzama deneyleri polimerin türüne bağlı kullanım alanına göre geniş bir sıcaklık ve çekme aralığında yapılır Her polimer için en uygun çekme hızı ve çekme sıcaklığı olmalıdır Deneyde kullanılan polimer malzemenin uygun ve standart boyutta olması gerekir Gerilim direnci- uzama için verilen ΔSTMD 638-77
Bu değerde polimerler yumuşak ve sert olarak ikiye ayrılır Burada polimerlerin sabit hızla çekilmesi sonucu gerilim direnci ve uzama ölçülür
Yumuşak polimer kalıbı
Sert polimer kalıbı
Bu kalıplar polimerin türüne ve deney şekline göre değişme gösterir Çekme hızı polimerin türüne ve kalıbına göre değişir
Çekme İşlemi: Metalden yapılmış iki çene arasında sıkıştırılan polimer örneği bir tarafa doğru çekilir
Gerilme direnci= F(polimere uygulanan kuvvet) / A (Kesit Alan)
δ = (L – Lo) / Lo = ΔL/Lo
L : Son uzunluk
Lo : Polimerin uzunluğu
Gerçek Gerilim Direnci:
Ao : İlk kesit alan

A : Uzama sonunda ölçülen kesit alan


Ao/A = L / Lo = (Lo + ΔL) / Lo = L + δ
Birimleri pascal  kg/cm2  kg/mm2
Örneğin çekme hızının artması gerilim direnci ve elastik modülün yüksek olmasına neden olur
İkinci örnek olarak sert ve bükülmez bir polimer olan PMMA’ın uzaması çekme hızının artması ile azalırken çoğu polimerde aksi davranış gösterir
Çekme sıcaklığı polimerlerin mekanik özelliklerinde çekme hızından daha etkindir Çekme sıcaklığının azalması yüksek gerilim direnci ve elastik modülü ile uzamadan azalmaya neden olur


2) Ergime Akış İndeksi Değeri


Polimerin ergimiş halde belli bir sürede ne kadar aktığını gösteren değer (EAi) Eai verileri polimerik malzemelerin işlenmesi sırasındaki akma olayını belirlemede yararlıdır Düşük akma hızlarının kullanıldığı ekstrüzyon, şişme ve kalıplama işlemlerinde yüksek akma hızlarının kullanıldığı enjeksiyon kalıplama işlemlerinde EAi değerleri çalışma şartlarını belirlemede yardımcı olur


ASTM D 1238-62
ASTM D 1238-63



Ağırlık:216 kg, 5kg, 216 kg EAi için üç farklı ağırlık kullanılabilir
Ağırlığın etkisiyle ergimiş polimer orfisten akmaya başlar Çıkan kısım tartılır
(gr polimer/10 dak) Bunun için standart zaman 10 dakikadır Eğer bu zaman aşılırsa yani 11 dakika olursa bu zaman 10 dakikaya gene çevrilmelidir
3) Gerilim Gevşemesi Sürünme Yorulma
Polimerlerin gerilim ve gerinim altında zaman bağlı deformasyonunun ölçümünde kullanılan yöntemdir


Gerilim gevşemesi : Polimerik malzeme belirlenen gerilim altında deforme edilir Deformasyonun yarattığı gerilim direncinin değişimi zaman karşı ölçülür Yarı kristal polimerlerde kristal yüzdesi gerilim gevşemesini etkiler Gerilim gevşemesi değerlerine göre kristal yüzdesi hakkında yani polimer hakkında bilgi sahibi olabiliriz
Amorf polimerlerde gerilim gevşemesini Tg’nin altında 0’a düşmesini beklemek yıllar sürer ve pratik değildir


Yarı kristal polimerlerde oda sıcaklığında Tg’nin üzerinde iseler gerilim direnci zamana karşı oldukça yavaş azalır ve çoğunlukla sıfıra inmez Bu da kristal yüzdesine bağlıdır Kristal yüzdesi arttıkça gerilim direncinde de zamana bağlı olarak azalmaya başlar Yarı kristal polimerlerde yönlenme ve plastik deformasyon olayı dikkate alınmaktadır Yönlenmiş bir malzemede kristal yüzdesi artar Dolayısıyla gerilim direncindeki azalma hızı yönlenmemiş polimere göre daha düşük olur


Gerilim gevşemesi bu deneylerde fazla pratik değildir Sert ve katı polimerler için çok az bir gerinim farklı polimerin yüksek gerilim direncine sahip olmasına neden olur
Yüksek gerilim dirençlerinde polimerin deformasyonu dışında kullanılan aletin deformasyonu da söz konusudur Sabit gerinim yumuşak ve düşük elastik modülüne sahip(AYPE) polimerler için kolaylıkla ulaşılır (fazla enerji sarf etmeden)
Sürünme: Sabit gerilimde uzamanın zamana bağlı değişiminin ölçümüdürsürünme deneylerinde malzemenin kullanım şartlarında zamanla ne kadar uzamaya(deformasyona) yol açacağı saptanır


Örneğin içine malzeme konulan polietilen torbalar ağırlık nedeniyle saplarından sünerler Ağırlık torbada sürdüğü sürece sünme devam eder ve bir noktadan sonra torbanın sapı kopar


Amorf polimerlerde Tg’nin altında sürünme yavaştır Sıcaklıkla sürünme artar Sürünme Tg’nin altında molekül ağırlığı ile bağıntılı değildir Çapraz bağ miktarı sürünmeyi azaltır Kristal yüzdesi yüksek olması durumunda polimerin yatkınlığı düşüktür Bu durumda tüm gerilim kristal bölgeler üzerindedir Bu durumda sürünme deneyi yıllarca sürebilir


Örnek: Birinci dereceden geçiş


Polimerlerde Tg değerinde bir kırılma var Isı alışverişini yansıtan herhangi bir sıçrama söz konusu değildir


Örnek: İkinci dereceden geçiş
H’ın kendisi değilde türevi bu sıçramayı gösterdiğinden bu sıçramaya II dereceden denilmiştir
Tg ikinci dereceden bir geçiş, Tm birinci dereceden bir geçiştir
Bazı polimerin Tg ve Tm değerleri
Polietilen -85(-120) 135
Polipropilen -20
Polistiren 100,105 240
Polivinilklorür 85 210
Poliakrilonitril 100,130
Polimetilmetakrilat 110
Polimerin Tm değeri yoksa amorf polimerdir
Camsı Geçiş Sıcaklığının Bağlı Olduğu Unsurlar (Tg)
1- Zincir türüne, yan gruplara
2- Zincir uzunluğuna (molekül ağırlığına)
3- Çapraz bağ miktarına
4- Dolgu maddesi, safsızlık, plastikleştirici bulunup bulunmadığına
5- Deney hızına ve örneğin hazırlanması ile izlenen termal yollar
Tg’ye etki eden faktörlerden birisi çözünürlük parametresidir Koresif enerji (bağların güçlü olması) çözünürlük parametresi ne kadar büyükse Tg değeride büyüktür
δ (g/cm3) Tg
Polipropilen 160 -20
Poliakrilonitril 31,5 90
Zincirdeki çapraz bağlar ve etkin dolgu maddeleriyle daha az hareketli yapılması durumunda Tg artar Polimer sistemine ters yönde yani Tg’nin azaltılması yönünde yani serbest hacim ilave edebilen moleküller eklenir


DTA


1) kristal yapıda çoklu geçişleri gösterir
2) Örneklerin yeniden kristallenmesini, belirli sıcaklıklarda malzemenin yönlenmesini
Yeniden kristallenme: Yumak şeklinde moleküller düzenli polimer haline gelir


DSC Şeması


DCS’de örnek ve referans sıcaklıkları devamlı sabit tutulur Sabit tutmak için enerji alışverişi sistem tarafından sağlanır Enerji alışverişleri ekzotermik ve endotermik olarak gözlenir

__________________
Arkadaşlar, efendiler ve ey millet, iyi biliniz ki, Türkiye Cumhuriyeti şeyhler, dervişler, müritler, meczuplar memleketi olamaz En doğru, en hakiki tarikat, medeniyet tarikatıdır
Alıntı Yaparak Cevapla

Molekül Ağırlığı Türleri ve Belirleme Yöntemleri/ortalama molekül ağırlığı/ Polimerlerin Çözünmesi

Eski 11-04-2010   #2
Şengül Şirin
Varsayılan

Molekül Ağırlığı Türleri ve Belirleme Yöntemleri/ortalama molekül ağırlığı/ Polimerlerin Çözünmesi



Molekül Ağırlığı Türleri ve Belirleme Yöntemleri

01 Sayıca ortalama molekül ağırlığı
02 Ağırlıkça ortalama molekül ağırlığı
03 Viskozite ortalama molekül ağırlığı

04 z- ortalama molekül ağırlığı



Polimerlerin karakterizasyonu için polimerlerin molekül ağırlıkları önemli bir kriterdir ve değişik yöntemlerle belirlenebilir Örneğin sayıca-ortalama molekül ağırlığı(Mn), ağırlıkça-ortalama molekül ağırlığı(Mw), viskozite-ortalama molekül ağırlığı(Mv) ve z-ortalama molekül ağırlığı (Mz) gibi değişik molekül ağırlığı türleri vardır Aşağıdaki tabloda örnek verilen molekül ağırlıklarının belirlenmesinde kullanılan yöntemler verilmiştir


Molekül ağırlığı türü Belirleme Yöntemi

Sayıca ortamla molekül ağırlığı (Mn) -Sayısal özelikler (kaynama noktası yükselmesi, donma noktası alçalması)
- Buhar basıncı düşmesi
- Osmotik basınç
- Son grup analizleri

Ağırlıkça ortalama molekül ağırlığı (Mw) Işık saçılması yöntemi
Viskozite ortalama molekül ağırlığı (Mv) Viskozite ölçümleri
z-ortalama molekül ağırlığı (Mz) Ultrasantrifüj yöntemi

Tablo:1 Polimerlerin molekül ağırlığı çeşitleri ve belirleme yöntemleri
Yukarıdaki tabloda sayısal özelliklerden yararlanarak molekül ağırlığı belirleme yöntemleri küçük moleküllü maddelere de uygulanabilir Son grup analizleri ve viskozite ölçümleri gibi yöntemler sadece polimerlerde kullanılabilir Bu molekül ağırlığı belirleme yöntemleri aynı polimer için farklı sonuçlar verir İri moleküllü, zor çözünen ve buhar fazına geçmeyen polimerlerin molekül ağırlığını belirlemek kolay değildir Molekül ağırlığı türlerinin deneysel olarak bulanabilmesi için polimerlerin çözelti halinde olması gerekir Bundan dolayı polimerin iyi bir çözücüsü bulunmalıdır


Polimerlerin Çözünmesi


Polimerlerin çözünmesi iki aşamada olur İlk aşamada çözücü moleküllerinin polimer içine difüzlenmesi sonucu, polimer şişmiş jel yapısına geçer Doğrusal dallanmış ve az oranda çapraz bağ içeren bütün polimerlerde bu ilk aşama meydana gelir İkinci aşama ise şişmiş jel gerçek bir çözelti oluşturacak şekilde dağılır Yoğun çapraz bağ içeren polimerlerde ikinci aşama gözlenmez ve hiçbir çözücüde çözünmezler
Genelde polimerler benzer benzeri çözer kuralı ile fiziksel ve kimyasal özellikleri kendine yakın olan çözücülerde çözünürler Örneğin polistiren kendi yapısına yakın olan toluen, etil benzen gibi maddelerde, poli(metil metakrilat) asetonda kolayca çözünür Polimerlerin çözünmesi bazen günler hatta haftalar sürebilir


01 Sayıca ortalama molekül ağırlığı


Çözeltilerde gözlenen buhar basıncı alçalması, kaynama noktası yükselmesi(ebüliyoskopi), donma noktası alçalması (kriyoskopi) ve osmotik basınç gibi özellikler yalnızca çözeltide çözünen maddenin molekül sayılarından etkilenir Örneğin çözelti ve çözücünün donma noktaları arasındaki sıcaklık farkı, Kd çözücünün donma noktası alçalma sabitini, m molaliteyi göstermek üzere,
ΔT = Kd m bağıntısıyla hesaplanabilir


Bu bağıntıdan aynı çözücü içerisinde molekül ağırlığı 10 g/mol ve 100000 g/mol olan iki ayrı maddenin 01 er molal çözeltileri kullanılarak hesaplanan donma noktası alçalması değerlerinin aynı olacağı görülebilir İkinci maddenin her bir molekülünün ağırlığı diğerlerinin 10000 katı olduğu halde, çözeltideki molekül sayıları eşit olduğu için aynı sıcaklık farkı bulunmuştur Bu tür molekül sayısına bağlı olarak değişen özelliklere sayısal özellikler (koligatif özellikler) denir Bu özelliklerin ölçümüyle belirlenen molekül ağırlığı değeri sayıca ortalama molekül ağırlığını verir


Osmotik Basınç



Bir polimer çözeltisinin osmotik basıncı aşağıdaki şekilde verilen düzenek ile belirlenebilir Sistem polimer moleküllerinin diğer tarafına izin vermeyen, fakat çözücü moleküllerinin geçişine izin veren yarı geçirgen membran ile ayrılmış iki bölmeden oluşur Sıcaklığı sabit tutulan sistemin bir bölmesine saf çözücü diğer bölmesine ise polimer çözeltisi konur Kimyasal potansiyel farkı nedeniyle çözücü molekülleri yarı geçirgen membrandan polimer çözeltisinin bulunduğu bölmeye difüzlenirler ve kılcalda sıvı seviyesi yükselir Difüzyon, osmotik basınç (π din/cm3) denilen değere ulaşıldığında durur Osmotik basınç değeri her iki bölmedeki kılcallar arasındaki sıvı seviyesifarkı (h: cm), yoğunluk (d: g/cm3) ve yer çekimi ivmesi (g: cm/s2) yardımıyla π=hdg bağıntısından bulunabilir


Osmotik basınç ve sayıca ortalama molekül ağırlığı ilişkisi π/c =RT/Mn + Bc şeklindedir Farklı derişimlerdeki polimer çözeltileri hazırlanıp osmotik basınç değerleri belirlendikten sonra π/c, c ye karşı grafiğe geçirilirse bir doğru elde edilir Şekil 2 de verilen doğrunun y kaymasından polimerin sayıca ortalama molekül ağırlığı hesaplanır ( y kayması= RT/Mn) pratik olarak ise polimerlerin sayıca ortalama molekül ağırlığı otomatik membran osmometreler kullanılarak belirlenir


Diğer sayısal özellikler


Çözücünün buhar basıncı azalması için (ΔP);
ΔP = po v/NA (N/V) + K2’’(N/V)2 + K3’’’(N/V)3 + …
po = çözücünün buhar basıncı
v = Çözücünün molar hacmi
N/V = birim hacimdeki molekül sayısı
K = Virial sabit
NA = Avogadro sayısı
Kaynama noktası yükselmesi;
ΔTk = R Tk2 v /Δhk NA (N/V) + K2’’(N/V)2 + K3’’’(N/V)3 + …
Donma noktası alçalması için, (ΔT)d;
ΔTd = R Td2 v /Δhd NA (N/V) + K2’’(N/V)2 + K3’’’(N/V)3 + …
Bu bağıntılar yardımıyla herhangi bir sayısal özellikten yararlanılarak polimer molekül ağırlığı hesaplanır
Örneğin seyreltik polimerler çözeltileri için üçüncü virial sabit ve daha yüksek virial sabitler sıfır alınarak ve birim hacimdeki polimer moleküllerinin sayısının polimer çözeltisi derişimiyle ( c) ilişkisini veren,
N / NAV = c / Mn bağıntısı kullanılarak, osmotik basınç molekül ağırlığı ilişkisini veren bağıntı
π = (RT/Mn )c + Bc2 B = K2’ NA2
Teorik olarak herhangi bir sayısal özellik polimerlerin molekül ağırlığının belirlenmesinde kullanılabilir ise de osmotik basınç yöntemi en iyi sonucu verir Osmotik basınç yöntemi 20 000- 1000 000 g/mol arasındaki molekül ağırlıklarının belirlenmesinde kullanılabilir Diğer koligatif özelliklerin polimerlerin molekül ağırlıklarının bulunmasında kullanımı sınırlıdır ve 3000 -4000 g/mol değerinden küçük molekül ağırlıklarının ölçülmesinde faydalı olabilirler


Son grup analizleri


Poliester, poliamit gibi basamaklı polimerlerde zincirlerin uçlarında bulunan son grup türleri bilinir Bu tür polimerlerde yapılacak son grup analizleriyle sayıca ortalama molekül ağırlığı belirlenir Örneğin karboksil ve amin grubunu birlikte taşıyan NH2-R-COOH yapısındaki bir maddenin polimerizasyonu H-[-NH-R-CO-]n-OH formülüne uygun bir poliamit verir Bu polimerlerde zincirler uç grup türleri açısından
HOOC ————–COOH
H2N —————–COOH
H2N——————NH2
şeklinde üç ayrı olasılıkta bulunabilirlergörüldüğü gibi toplam zincirlerde yer alan –COOH grubu sayısı veya –NH2 grubu sayısı toplam polimer zinciri sayısına eşittir Uygun bir yöntemle bu son grupların birisi sayılırsa polimer örneğindeki zincir sayısı da elde edilmiş olur
Örnek verilecek olursa yukarıdaki polimerin 0,15 gramı bir çözücüde çözülüp, asit gruplarının analizi için 0001 N NAOH dan 5 cm3 harcanmış ise polimer örneğin mol sayısı
Polimerdeki asit grubu mol sayısı = harcanan bazın mol sayısı
= 0001 x 5 x 10-3
= 5 x 10 -6 mol polimer şeklinde hesaplanır
Uygulamada kullanılan polimer miktarı 015 gram olduğuna ve bu miktar polimerin 5x 10-6 mol polimere karşılık geldiği bilindiğine göre polimerin sayıca ortalama molekül ağırlığı,
Mn = 015/ 5×10-6 = 30000 g/mol olur
Son grup analizleri 10000-40000 g/mol sınırları arasındaki molekül ağırlığı ölçümleri için uygundur Basamaklı polimerlerin molekül ağırlığı sınırlarının genelde 10000-50000 g/mol arasında olması ve polimer zincirlerinde belli son gruplar bulunması bu yöntemi daha avantajlı kılar


02 Ağırlıkça ortalama molekül ağırlığı


Ağırlıkça ortalama molekül ağırlığı belirlenirken genelde ışık saçılması yöntemi kullanılır Monokromik bir ışık demeti madde ile karşılaşırsa, ışık madde tarafından absorplanabilir veya gelen ışık doğrultusuna göre her yönde saçılabilir Saçılan ışık gelen ışık ile aynı dalga boyunda ise elastik saçılma, farklı dalga boylarında ise elastik olmayan saçılma meydana gelirGelen ışığın önemli bir oranı elastik saçılmaya uğrar Elastik olmayan saçılma, polimer kimyasında da yararlı olan Raman spektroskopisi tekniğinin temelini oluşturur Bir ışık demetinin seyreltik polimer çözeltilerinden geçmesi esnasında gözlenen elastik saçılma, saçılmaya neden olan taneciklerin sayısından çok büyüklüğüne karşı duyarlıdır Bu nedenle yöntem polimerin ağırlıkça ortalama molekül ağırlığını verir


Saçılma ile polimer çözeltisinden geçen ışığın şiddeti gelen ışık şiddetine (Io) göre azalma gösterir I / Io oranı aşağıda Lambert Beer yasası ile verilir
I / Io = e-τ l
l = ışığın çözelti içerisinde aldığı yol (cm)
τ = Türbidite (1/cm)
Türbitide: Çözeltinin birim kalınlığının gelen ışık şiddetini azaltma yeteneğinin bir ölçüsüdür
Türbidite ile molekül ağırlığı ilişkisi:
H c / t = 1 / Mw ( 1 + 2Bc + Cc2 +……)
c : Derişim (g/cm3)
B, C = Viral sabitler
H= 32 π 3 no2 (dn / dc) 2 / 3λ4 NA
No= Çözücünü kırma indisi
NA = Avogadro sayısı
dn/dc = Özgül kırma indisini
λ = Kullanılan ışığın dalga boyu


Ölçümler genelde gelen ve saçılan ışık arasındaki açının 90o olduğu anda yapılır Rayleigh oranı buradan hesaplanır Rayleigh oranı kullanılarak türbidite aşağıdaki şekilde bulunur
τ = 16 π R90 / 3


seyreltik polimer çözeltileri için üçüncü ve daha yüksek viral sabitler sıfır kabul edilerek bağıntı aşağıdaki gibi olur
H c / τ = 1 / Mw ( 1+ 2Bc)
H c / τ = 1 / Mw + 2B’c
B’ = B / Mw


Yöntem uygulamasında farklı derişimlerde seyreltik polimer çözeltileri hazırlanır H, τ değerleri yukarıda verilen bağıntıdan hesaplanır Daha sonra yukarıdaki son bağıntı yardımıyla her bir derişim için hesaplanan H c / τ değerleri grafiğe alınır Elde edilen doğrunun y-kaymasından polimerin ağırlıkça ortalama molekül ağırlığı bulunur


03 Viskozite ortalama molekül ağırlığı


Polimer çözeltilerinin viskoziteleri aynı ağırlıkta küçük molekül içeren çözeltilere göre oldukça yüksek değerdedir Bundan faydalanarak polimerlerin viskozite ortalama molekül ağırlığı belirlenir Staudinger 1920 yılında düşük derişimlerde bile polimer çözeltilerinin çözücü viskozitesine göre çok daha yüksek değerler aldığını gözlemlemiştir Polimer çözeltisinin viskozitesi; çözücü ve polimer türünden, polimerlerin molekül ağırlığından, polimer derişiminden ve sıcaklıktan etkilenir Çözeltilerin viskozitelerinin belirlenmesinde aşağıda verilen Ostwald viskozimetresi veya onun değiştirilmiş bir şekli olan Ubbelohde viskozimetresi kullanılabilir


a Ostwald viskozimetresi b Ubbelohde viskozimetresi


Şekillerdeki kapilerler üzerinde işaretlenen A ve B noktaları arasındaki ( V hacmindeki) bir çözelti veya bir sıvının akış süresi (t) belirlenerek , Poiseuille bağıntısından sıvıların viskozite (η) hesaplanabilir
V/t = π p r4 / 8 ηl
r : Kapiler yarıçapı
l : Kapiler boyu
p : Çözeltinin basıncı


Viskozimetre çözelti ve çözücünün akış sürelerinin ölçümünde kullanılırsa r, l ve V değerleri aynı olur Poiseuille bağıntısı çözücü ve çözelti ile yeniden yazılır
V/ t = π p r4 / 8 ηl çözelti
V/ t = π por4 / 8 ηol çözücü


Seyreltik çözeltiler için p=po varsayımı ile yukarıdaki iki bağıntı oranlanarak aşağıdaki eşitlik elde edilir


ηr = η/ηo = t/to


Yukarıdaki bağıntıdan viskozitesi bilinen bir sıvı kullanılarak diğer bir sıvının bağıl viskozitesi (ηr) bulunabilir
Polimer çözeltilerinde bağıl viskozite her zaman 1’den büyük değerler alır Bu sebeple bağıl viskozite yerine, çözeltideki polimer moleküllerinin viskozite üzerine kısmi etkisini daha iyi belirtecek olan spesifik viskoziteyi(ηsp) kullanma daha yararlıdır


ηsp = ηr -1 = (t- to ) / to = (η – ηo ) / η
Spesifik viskozitenin polimer derişimine bağlılığı seyreltik polimer çözeltileri için Huggins bağıntısıyla verilir
ηsp = [η] c + k’[η] 2 c2


Yukarıdaki bağıntıda k’ Huggins sabitidir ηsp / c oranı viskozite sayısı veya indirgenmiş viskozite olarak tanımlanır Polimer derişimi arttıkça viskozite sayısı küçülür ve limit halde indirgenmiş viskozite, limit viskozite sayısı ya da intrinsik viskozite olarak bilinen [η] bulunur


[η] = lim(ηsp /c)
ln ηr /c = [η] – k’’ [η]2 c


Bağıntıdaki ln ηr /c oranı inherent viskozite yada logaritmik viskozite sayısı olarak tanımlanır


İntrinsik viskozite molekül ağırlığı ilişkisi
[η] = K Mvα (Mark houwink bağıntısı)
Polimer Çözücü Sıcaklık (oC) K x 102 (cm3/g) α
Polistiren Benzen
Metil etil keton
Toluen 20
20-40
20-30 1,23
3,82
1,05 072
058
072

polibütadien siklohekzan 20 3,6 070
doğal kauçuk Toluen 25 50 067
Jelatin Su 35 0166 0885
Polipropilen Benzen
Siklohekzan 25
25 964
793 073
081

Poli(metil metakrilat) Aseton
Kloroform 25
25 075
048 070
080
Poli( vinil asetat) Aseton
Metanol 30
30 102
314 072
060
Poli( vinil alkol) su 25 300 050


04 z- ortalama molekül ağırlığı


fazlaca kullanılmayan bir molekül ağırlığı türüdür ve ultrasantrifüj yöntemi ile belirlenir Santrifüj etkisi altındaki polimer çözeltilerinin iki ayrı özelliği molekül ağırlığı belirlenmesinde kullanılır Farklı büyüklüklerdeki polimer molekülleri santrifüj etkisi altında değişik hızlarla santrifüf hücresinin tabanına doğru hareket eder Sedimentasyon hızındaki bu farklılıktan ve polimerin kısmi hacmi yardımıyla molekül ağırlığı bulunur İkinci olarak ise santrifüj etkisi ile santrifüj hücresi boyunca oluşan derişim gradientinden yararlanılır Homojen bir polimer çözeltisinde bölgesel derişim farkları olmadığı için derişim gradienti her yönde sıfırdır Santrifüjlenen çözeltide ise dönme noktası ve santrifüj hücresi tabanı arasında her düzeyde derişimler farklıdır Bu derişim gradienti optik yöntemlerle ölçülerek polimerin molekül ağırlığı belirlenir


Bazı Polimelerin Uluslararası kısaltılmış İsimleri


Kısaltılmış Adı Polimer
ABS Akrilonitril-bütadien-stiren kopolimeri
AMMA Akrilonitril-metil metakrilat kopolimeri
ANM Akrilik ester-akrilonitril kopolimeri
BR Polibütadien
BT Poli(1-büten)
CA Selüloz asetat
CAB Selüloz asetobütirat
CF Kresol-formaldehit reçinesi
CHR Poliepiklorhidrin
CL Poli(vinil klorür) lif
CPVC Klorlanmış poli(vinil klorür)
CR Polikloropren
EEA Etilen-etil akrilat kopolimeri
EP Epoksit reçinesi
EPDM Etilen-propilen-dien elastomeri
EVA Etilen-vinil asetat kopolimeri
FE Flor içeren elastomer
GEP Cam lif takviyeli elastomer
GFK Cam lif takviyeli plastik
IIR Bütil kauçuğu
MA Modakrilik lif
MF Melamin-formaldehit çözeltisi
MOD Modakrilik lif
NBR Akrilonitril-bütadien elastromeri
NR Doğal kauçuk
PA Poliamit
PAC Poliakrilonitril lif
PAN Poliakrilonitril
PBMA Poli(bütil metakrilat)
PCF Poli(triflorokloroetilen) lif
PCTFE Poli(triflorokloroetilen) lif
PDAP Poli(diallil ftalat)
PDMS Poli(dimetil siloksan)
PE Polietilen
PEO Poli(etilen oksit)
PES Poliester lif
PETP Poli(etilen teraftalat)
PF Fenol-formaldehit reçinesi
PFEP Tetrafloroetieln-hekzafloropropilen
PIB Poliizobütilen
PL Poli etilen
PMMA Poli(metil metakrilat)
PO Fenoksi reçinesi
POM Polioksi metilen
POR Propilen oksit-allilglisidil eter elastromeri
PP Polipropilen
PPO Poli(fenilen oksit)
PS Polistiren
PSB Stiren-bütadien kopolimeri
PST Polistiren lif
PTF Poli(tetrafloroetilen) lif
PTFE Poli(tetrafloroetilen)
PU Poliüretan lif
PUA Poli üre lif
PVA Poli(vinil eter)
PVAC Poli(vinil asetat)
PVAL Poli(vinil alkol)
PVB Poli(vinil bütiral)
PVC Poli(vinil klorür)
PVCA Vinil klorür-vinil asetat kopolimeri
PVDC Poli(viniliden klorür)
PVDF Poli(viniliden klorür)
PVF Poli(vinil florür)
PVFM Poli(vinil formal)
PVM Vinil eter-vinil klorür kopolimeri
SAN Stiren-akrilonitril kopolimeri
SBR Stiren-bütadien elastromeri
SI Silikon
UF Üre-formaldehit reçinesi
UP Doymamış poliester

__________________
Arkadaşlar, efendiler ve ey millet, iyi biliniz ki, Türkiye Cumhuriyeti şeyhler, dervişler, müritler, meczuplar memleketi olamaz En doğru, en hakiki tarikat, medeniyet tarikatıdır
Alıntı Yaparak Cevapla
 
Üye olmanıza kesinlikle gerek yok !

Konuya yorum yazmak için sadece buraya tıklayınız.

Bu sitede 1 günde 10.000 kişiye sesinizi duyurma fırsatınız var.

IP adresleri kayıt altında tutulmaktadır. Aşağılama, hakaret, küfür vb. kötü içerikli mesaj yazan şahıslar IP adreslerinden tespit edilerek haklarında suç duyurusunda bulunulabilir.

« Önceki Konu   |   Sonraki Konu »


forumsinsi.com
Powered by vBulletin®
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
ForumSinsi.com hakkında yapılacak tüm şikayetlerde ilgili adresimizle iletişime geçilmesi halinde kanunlar ve yönetmelikler çerçevesinde en geç 1 (Bir) Hafta içerisinde gereken işlemler yapılacaktır. İletişime geçmek için buraya tıklayınız.